Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T19:10:29.991Z Has data issue: false hasContentIssue false

A Model for Estimating Chemical Potentials in Ternary Semiconductor Compounds: the Case of InGaAs

Published online by Cambridge University Press:  15 May 2017

Vadym Kulish
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576
Wenyan Liu
Affiliation:
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, Faculty of Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576
*
Get access

Abstract

In ab initio modeling of doped semiconductors, estimation of defect formation energies involving substitutional sites of ternary compounds is ambiguous due to an approximate treatment of chemical potential of the substituted atoms. We propose a model of assigning fractions of the formation energy to individual atoms of a ternary semiconductor and test it on InGaAs. The accuracy of this approximation is on the order of 0.1 eV/atom and is expected to be sufficient for many practical purposes.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Legrain, F., Malyi, O., Manzhos, S., J. Power Sources, 278 (2015) 197202.CrossRefGoogle Scholar
Legrain, F., Malyi, O.I., Manzhos, S., Comp. Mater. Sci., 94 (2014) 214217.CrossRefGoogle Scholar
Kulish, V.V., Malyi, O.I., Ng, M.F., Wu, P., Chen, Z., RSC Adv., 3 (2013) 42314236.CrossRefGoogle Scholar
Wan, W.H., Zhang, Q.F., Cui, Y., Wang, E.G., J. Phys. Condens. Matter, 22 (2010) 415501.CrossRefGoogle Scholar
Legrain, F., Manzhos, S., J. Chem. Phys., 146 (2017) 034706.Google Scholar
Leao, C.R., Fazzio, A., da Silva, A.J.R., Nano Lett., 8 (2008) 18661871.CrossRefGoogle Scholar
Peelaers, H., Partoens, B., Peeters, F.M., Nano Lett., 6 (2006) 27812784.Google Scholar
Chroneos, A., Mater. Sci. Semicon. Proc., 15 (2012) 691696.CrossRefGoogle Scholar
Kratzer, P., Penev, E., Scheffler, M., Appl. Surf. Sci., 216 (2003) 436446.Google Scholar
Wang, J., Lukose, B., Thompson, M.O., Clancy, P., J. Appl. Phys., 121 (2017) 045106.Google Scholar
Freysoldt, C., Grabowski, B., Hickel, T., Neugebauer, J., Kresse, G., Janotti, A., Van de Walle, C.G., Rev. Mod. Phys., 86 (2014) 253305.CrossRefGoogle Scholar
Van de Walle, C.G., Neugebauer, J., J. Appl. Phys., 95 (2004) 38513879.Google Scholar
Del Alamo, J.A., Nature, 479 (2011) 317323.Google Scholar
Hu, J., Deal, M., Plummer, J., J. Appl. Phys., 78 (1995) 15951605.Google Scholar
Koumetz, S., Marcon, J., Ketata, K., Ketata, M., Dubon-Chevallier, C., Launay, P., Benchimol, J., Appl. Phys. Lett., 67 (1995) 21612163.Google Scholar
Marcon, J., Koumetz, S., Ketata, K., Ketata, M., Caputo, J., Eur. Phys, J. Appl. Phys., 8 (1999) 718.Google Scholar
Koumetz, S.D., Martin, P., Murray, H., J. Appl. Phys., 116 (2014) 103701.CrossRefGoogle Scholar
Liu, W., Sk, M.A., Manzhos, S., Martin-Bragado, I., Benistant, F., Cheong, S.A., Acta Mater., 125 (2017) 455464.Google Scholar
Araujo, R.B., Banerjee, A., Panigrahi, P., Yang, L., Strømme, M., Sjödin, M., Araujo, C.M., Ahuja, R., J. Mater. Chem. A, (2017).Google Scholar
Perdew, J.P., Burke, K., Ernzerhof, M., Phys. Rev. Lett., 77 (1996) 38653868.Google Scholar
Kresse, G., Furthmüller, J., Phys. Rev. B, 54 (1996) 1116911186.CrossRefGoogle Scholar
Kresse, G., Joubert, D., Phys. Rev. B, 59 (1999) 17581775.Google Scholar
Blöchl, P.E., Phys. Rev. B, 50 (1994) 17953.Google Scholar
Monkhorst, H.J., Pack, J.D., Phys. Rev. B, 13 (1976) 51885192.CrossRefGoogle Scholar
Blöchl, P.E., Jepsen, O., Andersen, O.K., Phys. Rev. B, 49 (1994) 16223.Google Scholar
Murphy, S., Chroneos, A., Grimes, R., Jiang, C., Schwingenschlögl, U., Phys. Rev. B, 84 (2011) 184108.Google Scholar
Lee, S., Wright, A., Modine, N., Battaile, C., Foiles, S., Thomas, J., Van der Ven, A., Phys. Rev. B, 92 (2015) 045205.Google Scholar
Kittel, C., Introduction to Solid State Physics, 8th ed., Wiley, 2004.Google Scholar
Penrose, R., Math. Proc. Cambridge Philos. Soc., 51 (1955) 406413.Google Scholar
Tahini, H., Chroneos, A., Murphy, S., Schwingenschlögl, U., Grimes, R., Appl, J.. Phys., 114 (2013) 063517.Google Scholar
Legrain, F., Manzhos, S., AIP Advances, 6 (2016) 045116.Google Scholar
Legrain, F., Malyi, O.I., Manzhos, S., MRS Proc., 1678 (2014) mrss14-1678-n1609-1606.CrossRefGoogle Scholar