Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T17:09:05.004Z Has data issue: false hasContentIssue false

Microstructural influence on piezoresponse and leakage current behavior of Na0.5Bi0.5TiO3 Thin Films

Published online by Cambridge University Press:  16 May 2016

Kumaraswamy Miriyala
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana - 502285, India.
Ranjith Ramadurai*
Affiliation:
Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana - 502285, India.
*
*Corresponding Author: Tel. : +91-40-2301 7046 ; E-mail: [email protected]
Get access

Abstract

Sodium bismuth titanate (Na0.5Bi0.5TiO3: NBT) a lead free piezoelectric; exhibits promising features such that it could be an alternate to lead based piezoelectrics. In this work, we report the microstructural influence on piezoelectric and leakage current behavior of NBT thin films grown by pulsed laser ablation (PLD). Various microstructural features like coarse faceted grains and fine spherical grains was achieved by effective optimization of substrate temperature and oxygen partial pressures. The studies reveals that, leakage current of NBT thin films were dominated by interface limited modified Schottky emission type of conduction. The piezoelectric domain studies reveal that for NBT thin films with fine spherical grain the domain pattern was highly dominated by the morphology and in the case of coarse faceted grains the domains were relatively large and the domains were extending beyond the grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Smolenskii, G.A., Isupov, V.A., Agranovskaya, A.I., Krainik, N.N., Sov. Phys. Solid State 2, 2651 (1961).Google Scholar
Kreisel, J., Glazer, A.M., Bouvier, P. and Lucazeau, G., Phys. Rev. B 63, 174106 (2001).CrossRefGoogle Scholar
Groting, M., Hayn, S., Albe, K., J. Solid State Chem. 184, 2041 (2011).CrossRefGoogle Scholar
Dorcet, V., Trolliard, G., Acta Mater. 56, 1753 (2008).CrossRefGoogle Scholar
chiang, Y.M., Farrey, G.W., and Soukhojak, A.N., Appl. Phys. Lett. 73, 3683 (1998).CrossRefGoogle Scholar
Dorcet, V., Trolliard, G. and Boullay, P., Chem. Mater. 20, 5061 (2008).CrossRefGoogle Scholar
Gorfman, S. and Thomas, P. A., J. Appl. Cryst. 43, 1409 (2010).CrossRefGoogle Scholar
Levin, I. and Reaney, I. M., Adv. Funct. Mater. 22, 3445 (2012).CrossRefGoogle Scholar
Thangavelu, K., Ramadurai, R., and Asthana, S., AIP Adv.4, 017111 (2014).CrossRefGoogle Scholar
Duclere, J.-R., Cibert, C., Boulle, A., Dorcet, V., Marchet, P., Champeaux, C. , Catherinot, A. Deputier, S., Guilloux-Viry, M., Thin Solid Films 517, 592 (2008).CrossRefGoogle Scholar
Yang, C. H., Hu, G. D., Wu, W. B., T Wu, H., Yang, F., Lu, Z. Y., and Wang, L., Appl. Phys. Lett. 100, 022909 (2012).CrossRefGoogle Scholar
Bousquet, M., Duclere, J.-R., Champeaux, C., Boulle, A., Marchet, P., Catherinot, A., Wu, A., Vilarinho, P.M., Deputier, S., Guillouxy-Viry, M., Crunteanu, A., Gautier, B., Albertini, D., and Bachelet, , J.Appl. Phys.107, 034102 (2010).CrossRefGoogle Scholar
Bousquet, M., Duclere, J.-R., Gautier, B., Boulle, A., Wu, A., Deputier, S., Fasquelle, D., Remondiere, F., Albertini, D., Champeaux, C., Marchet, P., Guillouxy-Viry, M., and Vilarinho, P., J. Appl. Phys. 111, 104106 (2012).CrossRefGoogle Scholar
Rogers, M. E., Fancher, C. M., and Blendell, J. E., J. Appl. Phys. 112, 052014 (2012).CrossRefGoogle Scholar
Bousqet, M., Duclere, J.R., Orhan, E., Boulle, A., Bachelet, C., and Champeaux, C. C., J. Appl. Phys. 107, 104107 (2012).CrossRefGoogle Scholar
Ranjith, R., Prellier, W., Cheah, J. W., Wang, J., and Wu, T., Appl. Phys. Lett. 92, 232905 (2008).CrossRefGoogle Scholar
Gruverman, A. and Kalinin, S. V., J. Mater. Sci. 41 (2006) 107116.CrossRefGoogle Scholar
Shvartsman, V.V., Kholkin, A.L., Phys. Rev. B 69 (2004) 014102–5.CrossRefGoogle Scholar
Catalan, G., Bea, H., Fusil, S., Bibes, M., Paruch, P., Barthelemy, A., and Scott, J. F., Phy. Rev. Lett. 100, 027602 (2008).CrossRefGoogle Scholar
Ranjith, R., Mangalam, R.V.K., Boullay, Ph., David, A., Lepetit, M. B., Lüders, U., Prellier, W., Da Costa, A., Ferri, A., Desfeux, R., Vincze, Gy., Radi, Zs., and Aruta, C., Appl. Phys. Lett. 96, 022902 (2010).CrossRefGoogle Scholar
Miriyala, K., Ranjith, R., Mater. Lett. (Under review).Google Scholar