Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T19:47:29.834Z Has data issue: false hasContentIssue false

Micro Grain Analysis in Plastically Deformed Silicon by 2nd-Order X-Ray Diffraction

Published online by Cambridge University Press:  26 June 2018

Gabriel Dina
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada
Ariel Gomez Gonzalez
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada
Sérgio L. Morelhão
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada Institute of Physics, University of São Paulo, São Paulo, SP, Brazil
Stefan Kycia*
Affiliation:
Department of Physics, University of Guelph, Guelph, Ontario, Canada
*
Get access

Abstract

Second-order diffraction (SOD) of x-rays refers to all diffraction processes where the photons reaching the detector have been diffracted twice within a crystal lattice. By measuring the two dimensional intensity profile of SOD, it is possible to distinguishing rescattering processes taking place inside each grain (perfect crystal domain) or in between grains. These two SOD regimes, usually called dynamical and kinematical, respectively, are ruled by size and relative orientation of the grains. In this work, we demonstrate how to explore SOD phenomena to understand the micro scale grain structure in plastically deformed silicon single crystal.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Nakajima, K. et al. . Nat Mater. 4, 47 (2005).Google Scholar
Zhong, Z. et al. . J. Appl. Cryst. 35, 646 (2001).CrossRefGoogle Scholar
Gomez, A., Dina, G., Kycia, S.. Rev. Sci. Instrum. 89, 063301 (2018).CrossRefGoogle Scholar
Kang, H. C. et al. . Phys. Rev. Lett. 96, 127401 (2006).CrossRefGoogle Scholar
Morelhão, S. L., Cardoso, L. P., de Carvalho, M. M. G.. MRS Proceedings 308. 439 (1993).CrossRefGoogle Scholar
Morelhao, S. L., Avanci, L. H., Cardoso, L. P.. MRS Proceedings 355, 215 (1994).CrossRefGoogle Scholar
Morelhão, S. L., Cardoso, L. P.. Appl J. Cryst. 29, 446 (1996).CrossRefGoogle Scholar
Hayashi, M. A. et al. . Appl. Phys. Lett. 71, 2614 (1997).CrossRefGoogle Scholar
Morelhão, S. L. et al. . MRS Proceedings 561, 87 (1999).CrossRefGoogle Scholar
Morelhão, S. L. et al. . Vacuum 46, 1013 (1995).CrossRefGoogle Scholar
Avanci, L. H. et al. . J. Cryst. Growth 188, 220 (1998).CrossRefGoogle Scholar
Morelhão, S. L. et al. . J. Appl. Cryst. 35, 69 (2002).CrossRefGoogle Scholar
Morelhão, S. L.. Quivy, A. A., Härtwig, J. . Microelectronics J. 34, 695 (2003).CrossRefGoogle Scholar
Morelhão, S. L., Domagala, J. Z.. J. Appl. Cryst. 40, 546 (2007).CrossRefGoogle Scholar
Freitas, R. O., Quivy, A. A., Morelhão, S. L.. J. Appl. Phys. 105, 036104 (2009).CrossRefGoogle Scholar
de Menezes, A. S., et al. . Cryst. Growth Des. 10, 3436 (2010).CrossRefGoogle Scholar
Freitas, R. O. et al. . AIP Conference Proceedings 1199, 351 (2010).CrossRefGoogle Scholar
Domagała, J. Z. et al. . J. Appl. Cryst. 49, 798 (2016).CrossRefGoogle Scholar
Zheng, Y.-Z., Soo, Y.-L., Chang, S.-L.. Scientific Reports 6, 25580 (2016).CrossRefGoogle Scholar
Smith, E. H. et al. . Appl. Phys. Lett. 111, 131903 (2017).CrossRefGoogle Scholar
de Prado, E, et al. . J. Appl. Cryst. 50, 1165 (2017).CrossRefGoogle Scholar
Morelhão, S. L. et al. . Appl. Phys. Lett. 112, 101903 (2018).CrossRefGoogle Scholar
Nisbet, A. G. et al. . Acta Cryst. A 71, 20 (2015).CrossRefGoogle Scholar
Avanci, L. H., Morelhão, S. L.. Acta Cryst. A 56, 507 (2000).CrossRefGoogle Scholar
Morelhão, S. L.. Computer Simulation Tools for X-ray Analysis. Springer (2016). pp. 179193.CrossRefGoogle Scholar