Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T05:17:57.705Z Has data issue: false hasContentIssue false

Metallographic, structural and mechanical characterization of low-density austenitic Fe-Mn-Al-C steels microalloyed with Ti/B and Ce/La in hot-rolling condition

Published online by Cambridge University Press:  18 October 2019

C.E. Coronado-Alba*
Affiliation:
Departamento de Metalurgia Mecánica, Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-3” Ciudad Universitaria, 58030Morelia, Michoacán, México
I. Mejía*
Affiliation:
Departamento de Metalurgia Mecánica, Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-3” Ciudad Universitaria, 58030Morelia, Michoacán, México
Get access

Abstract

Low-density austenitic Fe-Mn-Al-C steels have high strength, high ductility and a significant weight reduction respect to other alloyed steels. However, this complex system exhibits second-phase precipitation, particularly κ-carbide. It is well-known that the microalloying elements addition to steel generates precipitation hardening, as well as grain refinement effect. It is worth noting that low-density steels can cause cracking during hot-rolling due to high Mn, Al and C contents and segregation in grain boundaries. Hot-rolling conditions play an important role in the dynamic recrystallization mechanisms, and therefore in the austenitic grain size. The main objective of this research work is the metallographic, structural and mechanical characterization of low-density steels microalloyed with Ti/B and Ce/La in hot-rolling condition. For this purpose Fe-(27-30)Mn-(7-8)Al-(1.2-1.8)C (wt.%) low density steels microalloyed with Ti/B and Ce/La were hot-rolled at 1200 °C in two stages. Metallographic, structural and mechanical characterization was carried out by optical (LOM) and scanning electron (SEM) microscopies, electron backscatter diffraction (EBSD) through quality images, inverse pole figures (IPF) and orientation distribution functions (ODF) maps, X-ray diffraction (XRD) and microhardness Vickers (HV) testing. In general, the first stage of hot-rolling exhibits a strongly bimodal microstructure of dynamically recrystallized austenitic grains, while the second stage shows more uniform recrystallized grain size. In the first stage of hot-rolling the austenite is the predominant phase, while in the second stage the α-ferrite phase is barely visible. Low-density steel microalloyed with Ti/B presented better grain size and microhardness values compared to steel microalloyed with Ce/La. Preferred crystallographic orientations were not found.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lehnhoff, G. R., Findley, K. O. and De Cooman, B. C., Scr. Mater. 92, 19 (2014).CrossRefGoogle Scholar
Yoo, J. D., Hwang, S. W. and Park, K. T., Metall. Mater. Trans. A 40, 1520 (2009).CrossRefGoogle Scholar
Bartlett, L. N. and Avila, B. R., Int. J. Metalcast. 10, 401 (2016).CrossRefGoogle Scholar
Titova, T., Shulgan, N. and Malykhina, I., Met. Sci. Heat Treat. 49, 44 (2007).CrossRefGoogle Scholar
Kong, H. J. and Liu, C. T., Tech . 6, 36 (2018).Google Scholar
Lan, J., He, J., Ding, W., Wang, Q. and Zhu, Y., ISIJ Int. 40, 1275 (2000).CrossRefGoogle Scholar
Gourdet, S. and Montheillet, F., Acta Mater. 51, 2685 (2003).CrossRefGoogle Scholar
Doherty, R. E., Hughes, D. A., Humphreys, F. J. and Jonas, J. J., Mater. Sci. Eng. A. 238, 219 (1997).CrossRefGoogle Scholar
Zhao, C., Song, R., Zhang, L., Yang, F. and Kang, T., Mater. Des. 91, 348 (2016).CrossRefGoogle Scholar
Kim, C. W., Kwon, S. I., Lee, B. H., Moon, J. O. and Lee, J. H., Mater. Sci. Eng. A 673, 108 (2016).CrossRefGoogle Scholar
Lin, C. L., Chao, C. G., Bor, H. Y. and Liu, T. F., Mater. Trans. 51, 1084 (2010).CrossRefGoogle Scholar
Park, K. T., Scr. Mater. 68, 375 (2013).CrossRefGoogle Scholar
Babu, S. S., Elmer, J. W., David, S. A. and Quintana, M. A., Phys. Eng. Sci. 95, 811 (2002).CrossRefGoogle Scholar
Shin, S. Y., Lee, H., Han, S. Y. and Seo, C. H., Metall. Mater. Trans. A. 41, 138 (2010).CrossRefGoogle Scholar
Welsch, E., Ponge, D., Hafes, S. M., Sandlobes, S. and Choi, P., Acta Mater. 116, 188 (2016).CrossRefGoogle Scholar