Published online by Cambridge University Press: 26 January 2016
A novel pressure sensor is proposed exhibiting generative properties fromdisplacement-induced ionic charge separation in gel electrolytes. Amechano-ionic or ‘piezo-ionic’ effect, in analogy to thewell-known piezoelectric effect, is hypothesized to originate from a differencein mobilities between cationic and anionic species causing a localized ioniccharge gradient upon application of pressure. This gradient can be detected as avoltage or current by using copper electrodes placed at the sides or at regularintervals along a surface of the gel. The voltage generated may be a result ofthe local concentration gradient induced by the deformation of the gel orperhaps is the result of some ions moving faster through the porous gel thanothers. In this work, ionic polymer gels based on Poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) co-polymer were synthesized insitu to incorporate an organic electrolyte consisting ofbis(trifluoromethane)sulfonimide lithium salt in propylene carbonate. With twoelectrodes placed under the gel, the samples were subjected to a sinusoidalmechanical force while open circuit voltage was measured to determine therelationship between electrical signal and mechanical input. The voltagesgenerated are 10’s of mV in magnitude at 1 kPa. Results suggest amaximum sensitivity of 25 µV/Pa at 10 mHz, comparable to the voltagesexpected in piezoelectric polymers such as PVDF (44 µV/Pa for similardimensions). The non-aqueous, solid-state ionic gels presented in this workprovide improved stability and is less prone to evaporation than its aqueous,hydrogel based counterpart. The new mechanism of sensing provides an alternativeto the more rigid and less stretchable piezoelectric sensors.