Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T17:15:24.348Z Has data issue: false hasContentIssue false

Mechanical and bio-lubricated friction performance of PA6G for gear applications

Published online by Cambridge University Press:  28 October 2020

María T. Hernández-Sierra
Affiliation:
Departamento de Ingeniería Mecánica, Tecnológico Nacional de México en Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México. Facultad de Química, Universidad de Guanajuato, Noria Alta S/N, 36050-Guanajuato, Guanajuato, México
Juan E. Marta
Affiliation:
Departamento de Ingeniería Mecánica, Tecnológico Nacional de México en Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México.
Luis D. Aguilera-Camacho
Affiliation:
Departamento de Ingeniería Mecánica, Tecnológico Nacional de México en Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México.
J.S. García-Miranda
Affiliation:
Departamento de Ingeniería Mecánica, Tecnológico Nacional de México en Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México.
José E. Báez-García
Affiliation:
Facultad de Química, Universidad de Guanajuato, Noria Alta S/N, 36050-Guanajuato, Guanajuato, México
Karla J. Moreno*
Affiliation:
Departamento de Ingeniería Mecánica, Tecnológico Nacional de México en Celaya, Apartado Postal 57, 38010-Celaya, Guanajuato, México.
Get access

Abstract

The PA6G blue is a polymeric material for great versatility of engineering applications that required good mechanical and tribological properties such as gears. The focus of this study was to investigate the mechanical properties as well as the friction and wear resistance of a commercial PA6G blue under biodegradable external lubrication, to evaluate its potential use for gear applications. Firstly, the PA6G blue was characterized by FTIR analysis in order to identify the characteristic chemical groups of this polymer. The mechanical characterization was performed by tension and hardness tests according to the standards ASTM D638 and ASTM E10, respectively. Subsequently, friction tests were carried out on a tribometer with pin-on-disk configuration based on the ASTM G99 standard, in dry and lubricated conditions. Natural castor and canola oils were employed as bio-lubricants, as well as their mixture at 50% by volume. The results exhibited that the PA6G blue exhibit good mechanical performance as that required by gear fabrications. Besides, the friction performance showed a low friction coefficient of 0.11 in the dry condition that decreased about 50% in lubricated tests, obtaining a friction coefficient value of 0.054.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pogačnik, A., Kupec, A., and Kalim, M., Wear 378‐379, 17-26 (2017).CrossRefGoogle Scholar
Samyn, P., De Baets, P., Schoukens, G., and Van Driessche, I., Wear 262, 1433-1449 (2007).CrossRefGoogle Scholar
Hüseyin, I. and Çuvalci, H., Res. Eng. Struct. Mat. 3 (1), 77-87 (2016).Google Scholar
Neis, P.D., Ferreira, N.F., Poletto, J.C., Sukumaran, J., Andó, M., and Zhang, Y., Wear 376‐377, 1391-1398 (2017).CrossRefGoogle Scholar
Keresztes, R., Odrobina, M., Kalacska, G., and Subramanian, K., Compos. B. Eng. 160, 119-130 (2019).CrossRefGoogle Scholar
Xu, M., Lu, J., Qiao, Y., Wei, L., Liu, T., Lee, P.C., Zhao, L., and Park, C.B., Mater. Des. 196, 109173 (2020).CrossRefGoogle Scholar
Sarita, B. and Senthilvelan, S., Tribol. Int. 137, 193-211 (2019).CrossRefGoogle Scholar
Dearna, K. D., Hoskins, T. J., Petrov, D. G., Reynolds, S. C., and Banks, R., Wear 298–299, 2013, 99-108CrossRefGoogle Scholar
Narendran, J. and Karthikeyan, T., Int. J. Heavy Veh. Syst. 27 (1/2), 97-125 (2020).CrossRefGoogle Scholar
Esfahanian, M. and Hamrock, B. J., Tribol. Trans. 34 (4), 628-632 (1991).CrossRefGoogle Scholar
Hernández-Sierra, M.T., Bravo-Sánchez, M.G., Báez, J.E., Aguilera-Camacho, L.D., García-Miranda, J.S., and Moreno, K.J., Appl. Sci. 9 (22), 4896 (2019).CrossRefGoogle Scholar
Liu, K., Yuanyuan, L., Tao, L., and Xiao, R., RSC Advances 8 (17), 9261-9271 (2018).CrossRefGoogle Scholar
Luo, H., Fu, Z., Jing, B., Shi, J., Zou, X., and Dai, W., J. Mater. Sci. 44, 3694-3701 (2009).CrossRefGoogle Scholar
Abdelbary, A., Wear of Polymers and Composites, 1st ed. (Woodhead Publishing, Cambridge, UK, 2015) p. 1-36.Google Scholar
Achhammer, B.G., Reinhart, F.W., and Kline, G.M., J. Res. Natl. Bur. Stand. 46 (5), 2210 (1951).CrossRefGoogle Scholar