Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T21:02:15.815Z Has data issue: false hasContentIssue false

Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity

Published online by Cambridge University Press:  12 January 2017

D. A. Hite*
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 U.S.A
K. S. McKay
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 U.S.A
S. Kotler
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 U.S.A
D. Leibfried
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 U.S.A
D. J. Wineland
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 U.S.A
D. P. Pappas
Affiliation:
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 U.S.A
*
Get access

Abstract

Electric-field noise from the surfaces of ion-trap electrodes couples to the ion’s charge causing heating of the ion’s motional modes. This heating limits the fidelity of quantum gates implemented in quantum information processing experiments. The exact mechanism that gives rise to electric-field noise from surfaces is not well-understood and remains an active area of research. In this work, we detail experiments intended to measure ion motional heating rates with exchangeable surfaces positioned in close proximity to the ion, as a sensor to electric-field noise. We have prepared samples with various surface conditions, characterized in situ with scanned probe microscopy and electron spectroscopy, ranging in degrees of cleanliness and structural order. The heating-rate data, however, show no significant differences between the disparate surfaces that were probed. These results suggest that the driving mechanism for electric-field noise from surfaces is due to more than just thermal excitations alone.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O Schmidt, P., Rosenband, T., Langer, C., Itano, W. M., Bergquist, J. C., and Wineland, D. J., Science 309, 749 (2005).CrossRefGoogle Scholar
Biercuk, M. J., Uys, H., Britton, J. W., VanDevender, A. P., and Bollinger, J. J., Nature Nanotechnol. 5, 646 (2010).Google Scholar
Diddams, S. A., et al., Science 293, 825 (2001).Google Scholar
Ludlow, Andrew D., Boyd, Martin M., Ye, Jun, Peik, E., and Schmidt, P. O., Rev. Mod. Phys. 87, 637 (2015).Google Scholar
Blatt, R. and Wineland, D. J., Nature 453, 1008 (2008).Google Scholar
Debnath, S., Linke, N. M., Figgatt, C., Landsman, K. A., Wright, K., and Monroe, C., Nature 536, 63 (2016).Google Scholar
Wineland, D. J., Monroe, C., Itano, W. M., Leibfried, D., King, B. E., and Meekhof, D. M.. J. Res. Natl. Stand. Technol. 103, 259 (1998).Google Scholar
Turchette, Q. A., et al., Phys. Rev. A 61, 063418 (2000).Google Scholar
Deslauriers, L., Olmschenk, S., Stick, D., Hensinger, W. K., Sterk, J., and Monroe, C., Phys. Rev. Lett. 97, 103007 (2006).Google Scholar
Brownnutt, M., Kumph, M., Rabl, P. and Blatt, R., Rev. Mod. Phys. 87, 1419 (2015).CrossRefGoogle Scholar
Labaziewicz, J., Ge, Y., Leibrandt, D. R., Wang, S. X., Shewmon, R., and Chuang, I. L., Phys. Rev. Lett. 101, 180602 (2008).Google Scholar
Chiaverini, J. and Sage, J. M., Phys. Rev. A 89, 012318 (2014).Google Scholar
Bruzewicz, C. D., Sage, J. M., and Chiaverini, J., Phys. Rev. A 91, 041402 (2015).Google Scholar
Deslauriers, L., Haljan, P. C., Lee, P. J., Brickman, K.-A., Blinov, B. B., Madsen, M. J., and Monroe, C., Phys. Rev. A 70, 043408 (2004).Google Scholar
Epstein, R. J., et al., Phys. Rev. A 76, 033411 (2007).Google Scholar
Allcock, D. T. C., Guidoni, L., Harty, T. P., Ballance, C. J., Blain, M. G., Steane, A. M., and Lucas, D. M., New J. Phys. 13, 123023 (2011).CrossRefGoogle Scholar
Hite, D. A., Colombe, Y., Wilson, A. C., Allcock, D. T. C., Leibfried, D., Wineland, D. J., and Pappas, D. P. MRS Bull. 38, 826, (2013).Google Scholar
Hite, D. A., et al., Phys. Rev. Lett. 109, 103001 (2012).Google Scholar
Daniilidis, N., Gerber, S., Bolloten, G., Ramm, M., Ransford, A., Ulin-Avila, E., Talukdar, I., and Häffner, H., Phys. Rev. B 89, 245435 (2014).Google Scholar
20. McKay, K. S., Hite, D. A., Colombe, Y., Jördens, R., Wilson, A. C., Slichter, D. H., Allcock, D. T. C., Leibfried, D., Wineland, D. J., and Pappas, D. P., arXiv:1406.1778v1 (2014).Google Scholar
Safavi-Naini, A., Rabl, P, Weck, P. F., and Sadeghpour, H. R., Phys. Rev. A 84, 023412 (2011).Google Scholar
22. Kim, E., Safavi-Naini, A., Hite, D. A., McKay, K. S., Pappas, D. P., Weck, P. F., and Sadeghpour, H. R., arXiv:1610.10079v3 (2016).Google Scholar
Maiwald, R., Leibfried, D., Britton, J., Bergquist, J. C., Leuchs, G., and Wineland, D. J., Nat. Phys. 5, 551 (2009).Google Scholar
Arrington, C. L., et al., Rev. Sci. Instrum. 84, 085001 (2013).Google Scholar
Seidelin, S. et al., Phys. Rev. Lett. 96, 253003 (2006).Google Scholar
Ou, B., Zhang, J., Zhang, X., Xie, Y., Chen, T., Wu, C., Wu, W., and Chen, P., Sci. China Phys. Mech., Astron. 59, 123011 (2016).Google Scholar
Sigmund, P., J. Mater. Sci. 8, 1545 (1973).Google Scholar
Doret, S. C. et al., New J. Phys. 14, 073012 (2012).Google Scholar