Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T22:25:57.702Z Has data issue: false hasContentIssue false

Materials requirements for improving the electron transport layer/perovskite interface of perovskite solar cells determined via numerical modeling

Published online by Cambridge University Press:  27 July 2020

Jared D. Friedl
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606, USA
Ramez Hosseinian Ahangharnejhad
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606, USA
Adam B. Phillips
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606, USA
Michael J. Heben
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization, Department of Physics and Astronomy, University of Toledo, Toledo, Ohio, 43606, USA
Get access

Abstract

Perovskite solar cells continue to garner significant attention in the field of photovoltaics. As the optoelectronic properties of the absorbers become better understood, attention has turned to more deeply understanding the contribution of charge transport layers for efficient extraction of carriers. Titanium oxide is known to be an effective electron transport layer (ETL) in planar perovskite solar cells, but it is unlikely to result in the best device performance possible. To investigate the importance of band energy alignment between the electron transport layer and perovskite, we employ numerical modeling as a function of conduction band offset between these layers, interface recombination velocity, and ETL doping levels. Our simulations offer insight into the advantages of energy band alignment and allow us to determine a range of surface recombination velocities and ETL doping densities that will allow us to identify novel high performance ETL materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., Journal of the American Chemical Society 131 (17), 6050-+ (2009).CrossRefGoogle Scholar
Minemoto, T. and Murata, M., Journal of Applied Physics 116 (5) (2014).CrossRefGoogle Scholar
Minemoto, T. and Murata, M., Solar Energy Materials and Solar Cells 133, 8-14 (2015).CrossRefGoogle Scholar
Burgelman, M., Nollet, P. and Degrave, S., Thin Solid Films 361, 527-532 (2000).CrossRefGoogle Scholar
Jena, A. K., Kulkarni, A. and Miyasaka, T., Chem Rev 119 (5), 3036-3103 (2019).CrossRefGoogle Scholar
Wojciechowski, K., Saliba, M., Leijtens, T., Abate, A. and Snaith, H. J., Energy & Environmental Science 7 (3), 1142-1147 (2014).CrossRefGoogle Scholar
Umari, P., Mosconi, E. and De Angelis, F., Sci Rep 4, 4467 (2014).CrossRefGoogle Scholar
Hirasawa, M., Ishihara, T., Goto, T., Uchida, K. and Miura, N., Physica B 201, 427-430 (1994).CrossRefGoogle Scholar
Poplavskyy, D. and Nelson, J., Journal of Applied Physics 93 (1), 341-346 (2003).CrossRefGoogle Scholar
Giorgi, G., Fujisawa, J. I., Segawa, H. and Yamashita, K., J Phys Chem Lett 4 (24), 4213-4216 (2013).CrossRefGoogle Scholar
Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. and Herz, L. M., Adv Mater 26 (10), 1584-1589 (2014).CrossRefGoogle Scholar
Chouhan, A. S., Jasti, N. P., Hadke, S., Raghavan, S. and Avasthi, S., Curr Appl Phys 17 (10), 1335-1340 (2017).CrossRefGoogle Scholar
Zhang, X., Shen, J.-X., Wang, W. and Van de Walle, C. G., ACS Energy Letters 3 (10), 2329-2334 (2018).CrossRefGoogle Scholar
Yao, Y., Hsu, W.-L. and Dagenais, M., presented at the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017 (unpublished).Google Scholar
You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y. M., Chang, W.-H., Hong, Z., Chen, H., Zhou, H. and Chen, Q., Nature nanotechnology 11 (1), 75 (2016).CrossRefGoogle Scholar
Ling, X., Yuan, J., Liu, D., Wang, Y., Zhang, Y., Chen, S., Wu, H., Jin, F., Wu, F. and Shi, G., ACS applied materials & interfaces 9 (27), 23181-23188 (2017).CrossRefGoogle Scholar
Liang, H., Hu, Y.-C., Tao, Y., Wu, B., Wu, Y. and Cao, J., ACS applied materials & interfaces 11 (46), 43116-43121 (2019).CrossRefGoogle Scholar
Liu, X., Jiang, J., Wang, F., Xiao, Y., Sharp, I. D. and Li, Y., ACS applied materials & interfaces 11 (50), 46894-46901 (2019).CrossRefGoogle Scholar
Wang, J., Fu, W., Jariwala, S., Sinha, I., Jen, A. K.-Y. and Ginger, D. S., ACS Energy Letters 4 (1), 222-227 (2018).CrossRefGoogle Scholar