Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:20:24.680Z Has data issue: false hasContentIssue false

Magnetic Properties of Proton Irradiated Mn3Si2Te6 van der Waals Single Crystals

Published online by Cambridge University Press:  10 June 2019

L. M. Martinez
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
C. L. Saiz
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
A. Cosio
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
R. Olmos
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
H. Iturriaga
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
L. Shao
Affiliation:
Department of Nuclear Engineering, Texas A&M University, College Station, TX77845, USA
S. R. Singamaneni*
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
*
*(Email: srao@utep.edu)
Get access

Abstract

The bulk van der Waals crystal Mn3Si2Te6 (MST) has been irradiated with a proton beam of 2 MeV at a fluence of 1×1018 H+ cm-2. The temperature dependent magnetization measurements show a drastic decrease in the magnetization of 49.2% in the H//c direction observed in ferrimagnetic state. This decrease in magnetization is also reflected in the isothermal magnetization curves. No significant change in the ferrimagnetic transition temperature (75 K) was reflected after irradiation. Electron paramagnetic resonance (EPR) spectroscopy shows no magnetically active defects present after irradiation. Here, experimental findings gathered from MST bulk crystals via magnetic measurements, magnetocaloric effect, and heat capacity are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duong, D. L., Yun, S. J., and Lee, Y. H., “van der Waals Layered Materials: Opportunities and Challenges,” ACS Nano, vol. 11, no. 12, pp. 1180311830, Dec. 2017.CrossRefGoogle Scholar
Ajayan, P., Kim, P., and Banerjee, K., “Two-dimensional van der Waals materials,” Phys. Today, vol. 69, no. 9, pp. 3844, Aug. 2016.CrossRefGoogle Scholar
Gong, C. and Zhang, X., “Two-dimensional magnetic crystals and emergent heterostructure devices,” Science, vol. 363, no. 6428, p. eaav4450, Feb. 2019.CrossRefGoogle ScholarPubMed
Liu, Y., Ivanovski, V. N., and Petrovic, C., “Critical behavior of the van der Waals bonded ferromagnet Fe3−x GeTe2,” Phys. Rev. B, vol. 96, no. 14, p. 144429, Oct. 2017.CrossRefGoogle Scholar
Huang, B. et al. , “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit,” Nature, vol. 546, no. 7657, pp. 270273, Jun. 2017.CrossRefGoogle Scholar
Bonilla, M. et al. , “Strong room-temperature ferromagnetism in VSe 2 monolayers on van der Waals substrates,” Nat. Nanotechnol., vol. 13, no. 4, p. 289, Apr. 2018.CrossRefGoogle Scholar
Fei, Z. et al. , “Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2,” Nat. Mater., vol. 17, no. 9, p. 778, Sep. 2018.CrossRefGoogle ScholarPubMed
Lin, M.-W. et al. , “Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material,” J. Mater. Chem. C, vol. 4, no. 2, pp. 315322, Dec. 2015.CrossRefGoogle Scholar
May, A. F. et al. , “Magnetic order and interactions in ferrimagnetic Mn3Si2Te6,” Phys. Rev. B, vol. 95, no. 17, p. 174440, May 2017.CrossRefGoogle Scholar
Liu, Y. and Petrovic, C., “Critical behavior and magnetocaloric effect in Mn3Si2Te6,” Phys. Rev. B, vol. 98, no. 6, p. 064423, Aug. 2018.CrossRefGoogle Scholar
Abdurakhmanov, U., Granovskii, A. B., Radkovskaya, A. A., Usmanov, M. Kh., Sharipov, Sh. M., and Yugai, V. P., “The influence of neutron and proton irradiation on the magnetization of biotite,” Phys. Solid State, vol. 44, no. 2, pp. 312314, Feb. 2002.CrossRefGoogle Scholar
Han, S. W. et al. , “Controlling Ferromagnetic Easy Axis in a Layered MoS2 Single Crystal,” Phys. Rev. Lett., vol. 110, no. 24, p. 247201, Jun. 2013.CrossRefGoogle Scholar
Madauß, L. et al. , “Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation,” 2D Mater ., vol. 4, p. 015034, Mar. 2017.Google Scholar
Esquinazi, P., Spemann, D., Höhne, R., Setzer, A., Han, K.-H., and Butz, T., “Induced Magnetic Ordering by Proton Irradiation in Graphite,” Phys. Rev. Lett., vol. 91, no. 22, p. 227201, Nov. 2003.CrossRefGoogle Scholar
Lee, K. W. and Lee, C. E., “Electron Spin Resonance of Proton-Irradiated Graphite,” Phys. Rev. Lett., vol. 97, no. 13, p. 137206, Sep. 2006.CrossRefGoogle ScholarPubMed
Mathew, S. et al. , “Magnetism in MoS2 induced by proton irradiation,” Appl. Phys. Lett., vol. 101, no. 10, p. 102103, Sep. 2012.CrossRefGoogle Scholar
Zhou, R.-W. et al. , “Ferromagnetism in proton irradiated 4H-SiC single crystal,” AIP Adv., vol. 5, no. 4, p. 047146, Apr. 2015.CrossRefGoogle Scholar
Walker, R. C., Shi, T., Silva, E. C., Jovanovic, I., and Robinson, J. A., “Radiation effects on two-dimensional materials (Phys. Status Solidi A 12∕2016),” Phys. Status Solidi A, vol. 213, no. 12, pp. 3268–3268, 2016.CrossRefGoogle Scholar
Krasheninnikov, A. V. and Nordlund, K., “Ion and electron irradiation-induced effects in nanostructured materials,” J. Appl. Phys., vol. 107, no. 7, p. 071301, Apr. 2010.CrossRefGoogle Scholar
Geremew, A. et al. , “Proton-Irradiation-Immune Electronics Implemented with Two-Dimensional Charge-Density-Wave Devices,” ArXiv190100551 Cond-Mat Physicsphysics, Jan. 2019.Google Scholar
Shao, L. et al. , “Standardization of accelerator irradiation procedures for simulation of neutron induced damage in reactor structural materials,” Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At., vol. 409, pp. 251254, Oct. 2017.CrossRefGoogle Scholar
Gigax, J. G., Kim, H., Aydogan, E., Garner, F. A., Maloy, S., and Shao, L., “Beam-contamination-induced compositional alteration and its neutron-atypical consequences in ion simulation of neutron-induced void swelling,” Mater. Res. Lett., vol. 5, no. 7, pp. 478485, Nov. 2017.CrossRefGoogle Scholar
Joshi, J. P. and Bhat, S. V., “On the analysis of broad Dysonian electron paramagnetic resonance spectra,” J. Magn. Reson., vol. 168, no. 2, pp. 284287, Jun. 2004.CrossRefGoogle ScholarPubMed
Poole, C. P. and Farach, H. A., “Line Shapes in Electron Spin Resonance,” p. 33.Google Scholar
Poole, C. P. J. and Farach, H. A., Handbook of Electron Spin Resonance. Springer Science & Business Media, 1999.CrossRefGoogle Scholar
Gonzalez Beermann, P. A., McGarvey, B. R., Muralidharan, S., and Sung, R. C. W., “EPR Spectra of Mn2+-Doped ZnS Quantum Dots,” Chem. Mater., vol. 16, no. 5, pp. 915918, Mar. 2004.CrossRefGoogle Scholar
Ng, H. N. and Calvo, C., “Crystal Structure of and Electron Paramagnetic Resonance of Mn2+ in Cd2(NH4)2(SO4)3,” Can. J. Chem., vol. 53, no. 10, pp. 14491455, May 1975.CrossRefGoogle Scholar