Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T07:08:40.775Z Has data issue: false hasContentIssue false

Magnetic Properties of Proton Irradiated Fe2.7GeTe2 Bulk Crystals

Published online by Cambridge University Press:  19 June 2019

R. Olmos
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
A. Cosio
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
C. L. Saiz
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
L. M. Martinez
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
L. Shao
Affiliation:
Department of Nuclear Engineering, Texas A&M University, College Station, TX77845, USA
Q. Wang
Affiliation:
Department of Physics and Astronomy, West Virginia University, Morgantown, WV26506, USA
S. R. Singamaneni*
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, TX79968, USA
Get access

Abstract

van der Waals (vdW) magnetic materials show promise in being the foundation for future spintronic technology. The magnetic behavior of Fe2.7GeTe2 (FGT), a vdW itinerant ferromagnet, was investigated before and after proton irradiation. Proton irradiation of the sample was carried out at a fluence of 1×1018 cm-2. The magnetization measurements revealed a small increase of saturation magnetization (Ms) of about 4% upon proton irradiation of the sample, in which, the magnetic field was applied parallel to the c-axis. X-ray photoelectron spectroscopy for pristine and irradiated FGT revealed a general decrease in intensity after irradiation for Ge and Te and an increase in peak intensity of unavoidable surface iron oxide. Furthermore, no noticeable change in the Curie temperature (TC =152 K) is observed in temperature dependent magnetization variation. This work signifies the importance of employing protons in tuning the magnetic properties of vdW materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D. R., Cheng, R., Seyler, K. L., Zhong, D., Schmidgall, E., McGuire, M. A., Cobden, D. H., Yao, W., Xiao, D., Jarillo-Herrero, P. and Xu, X., Nature 546, 271 (2017).Google Scholar
Kim, H. H., Yang, B., Patel, T., Sfigakis, F., Li, C., Tian, S., Lei, H., and Tsen, A. W., Nano Lett ., 18, 48854890 (2018).CrossRefGoogle Scholar
Geim, A. K., Grigorieva, I. V., Nature, 499, 419 (2013).CrossRefGoogle Scholar
Gong, C., Li, L., Li, Z., Ji, H., Stern, A., Xia, Y., Nature, 546, 265 (2017).CrossRefGoogle Scholar
Chhowalla, M., Shin, H. S., Eda, G., Ki, L. J., Loh, K. P., and Zhang, H., Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
Liu, Y., Ivanovski, V. N., and Petrovic, C., Phys. Rev. B, 96, 144429 (2017).CrossRefGoogle Scholar
Li, X. and Yang, J., J. Mater. Chem. C, 2, 7071 (2014).CrossRefGoogle Scholar
Deiseroth, H. J., Aleksandrov, K., Reiner, C., Kienel, L., and Kremer, R. K., Eur. J. Inorg. Chem. 2006, 1561 (2006).CrossRefGoogle Scholar
Zhu, J. X., Janoschek, M., Chaves, D. S., Cezar, J. C., Durakiewicz, T., Ronning, F., Sassa, Y., Mansson, M., Scott, B. L., Wakeham, N., Bauer, E. D., and Thompson, J. D., Phys. Rev. B 93, 144404 (2016).CrossRefGoogle Scholar
Chen, B., Yang, J. H., Wang, H. D., Imai, M., Ohta, H., Michioka, C., Yoshimura, K., and Fang, M. H., J. Phys. Soc. Jpn. 82, 124711 (2013).CrossRefGoogle Scholar
May, A. F., Calder, S., Cantoni, C., Cao, H. B., and McGuire, M. A., Phys. Rev. B 93, 014411 (2016).CrossRefGoogle Scholar
Mathew, S., Gopinadhan, K., Chan, T. K., Yu, X. J., Zhan, D., Appl. Phys. Lett. 101, 102103 (2012).CrossRefGoogle Scholar
Thakur, H., Thakur, P., Kumar, R., Brookes, N. B., Sharma, K. K., Singh, A. P., Kumar, Y., Gautam, S., and Chae, K. H., Appl. Phys. Lett. vol. 072405, 10-13 (2017).Google Scholar
Huang, B., Clark, G., Navarro-Moratalla, E., Klein, D. R., Cheng, R., Seyler, K. L., Nature 546, 270 (2017).CrossRefGoogle Scholar
Shao, L., Gigax, J., Chen, D., Kim, H., Garner, F. A., Wang, J., Toloczko, M. B., Nucl. Instrum. Methods Phys. Res. B. 409, 251-254 (2017).CrossRefGoogle Scholar
Gigax, J. G., Kim, H., Aydogan, E., Garner, F. A., Malony, S., Shao, L., Mat. Res. Lett. 5, 478-485 (2015).CrossRefGoogle Scholar
Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., McIntyre, N. S., Surf. Interface Anal. 36: 1564-1574 (2004).CrossRefGoogle Scholar
Biesinger, M. C., Paynec, B. P., Grosvenor, A. P., Lau, L. W.M., Gerson, A. R., Smart, R. St. C., Appl. Surf. Sci. 257 27172730 (2011).CrossRefGoogle Scholar
Prabhakaran, K. , Ogino, T., Surf. Sci. 325 263-271 (1995).CrossRefGoogle Scholar
Kim, D. H., Kim, K., Ko, K. T., Seo, J., Kim, J. S., Jang, T. H., Kim, Y., Kim, J. Y., Cheong, S. W., and Park, J. H., Phys. Rev. Lett., 122, 207201 (2019)CrossRefGoogle Scholar