Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T15:19:13.587Z Has data issue: false hasContentIssue false

Lysine-Capped Silica Nanoparticles: A Solid-State NMR Spectroscopy Study

Published online by Cambridge University Press:  18 May 2016

Chengchen Guo*
Affiliation:
School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona, 85287-1604, USA
Gregory P. Holland
Affiliation:
Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, 92182-1030, United States
Jeffery L. Yarger
Affiliation:
School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, Arizona, 85287-1604, USA
*
(Email: [email protected])
Get access

Abstract

To achieve the goal of biocompatibility in nano-based materials we must first obtain a fundamental understanding of the physical and chemical behavior of biomolecules at the interfaces of nanomaterials. A first step towards understanding protein interactions with nanomaterials is to understand how individual amino acids interact at the interfaces. In this paper, we investigated the lysine adsorption behavior on fumed silica nanoparticles by solid-state NMR spectroscopy. We use 1H, 13C and 15N solid-state magic angle spinning (MAS) NMR techniques to elucidate how lysine is adsorbed on silica nanoparticles surfaces via strong hydrogen-bonding interaction between the protonated side-chain amine group and silanol group on silica nanoparticles surfaces.*

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Tarn, D., Ashley, C. E., Xue, M., Carnes, E. C., Zink, J. I. and Brinker, C. J., Acc. Chem. Res. 46, 792801 (2013).Google Scholar
Ashley, C. E., Carnes, E. C., Phillips, G. K., Padilla, D., Durfee, P. N., Brown, P. A., Hanna, T. N., Liu, J., Phillips, B., Carter, M. B., Carroll, N. J., Jiang, X., Dunphy, D. R., Willman, C. L., Petsev, D. N., Evans, D. G., Parikh, A. N., Chackerian, B., Wharton, W., Peabody, D. S. and Brinker, C. J., Nat. Mater. 10, 389397 (2011).Google Scholar
Hubbell, J. A. and Chilkoti, A., Science 337, 303305 (2012).Google Scholar
Liu, J., Stace-Naughton, A., Jiang, X. and Brinker, C. J., J. Am. Chem. Soc. 131, 13541355 (2009).CrossRefGoogle Scholar
Patwardhan, S. V., Emami, F. S., Berry, R. J., Jones, S. E., Naik, R. R., Deschaume, O., Heinz, H. and Perry, C. C., J. Am. Chem. Soc. 134, 62446256 (2012).Google Scholar
Shemetov, A. A., Nabiev, I. and Sukhanova, A., ACS Nano 6, 45854602 (2012).CrossRefGoogle Scholar
Rimola, A., Costa, D., Sodupe, M., Lambert, J. F. and Ugliengo, P., Chem. Rev. 113, 42164313 (2013).Google Scholar
Zhu, L., Zhang, C., Guo, C., Wang, X., Sun, P., Zhou, D., Chen, W. and Xue, G., J. Phys. Chem. C 117, 1139911404 (2013).Google Scholar
Yu, C., Zhu, L., Zhang, R., Wang, X., Guo, C., Sun, P. and Xue, G., J. Phys. Chem. C 118, 1043410440 (2014).Google Scholar
Qian, H., Zhu, M., Gayathri, C., Gil, R. R. and Jin, R., ACS Nano 5, 89358942 (2011).Google Scholar
Ben Shir, I., Kababya, S., Amitay-Rosen, T., Balazs, Y. S. and Schmidt, A., J. Phys. Chem. B 114, 59895996 (2010).Google Scholar
Ben Shir, I., Kababya, S. and Schmidt, A., J. Phys. Chem. C 116, 96919702 (2012).Google Scholar
Amitay-Rosen, T. and Vega, S., Phys. Chem. Chem. Phys. 12, 67636773 (2010).Google Scholar
Amitay-Rosen, T., Kababya, S. and Vega, S., J. Phys. Chem. B 113, 62676282 (2009).Google Scholar
Mirau, P. A., Serres, J. L. and Lyons, M., Chem. Mater. 20, 22182223 (2008).Google Scholar
Ben Shir, I., Kababya, S. and Schmidt, A., J. Phys. Chem. C 118, 79017909 (2014).Google Scholar
Guo, C. and Holland, G. P., J. Phys. Chem. C 118, 2579225801 (2014).Google Scholar
Guo, C. and Holland, G. P., J. Phys. Chem. C 119, 2566325672 (2015).Google Scholar
Yokoi, T., Sakamoto, Y., Terasaki, O., Kubota, Y., Okubo, T. and Tatsumi, T., J. Am. Chem. Soc. 128, 1366413665 (2006).Google Scholar
Yokoi, T., Wakabayashi, J., Otsuka, Y., Fan, W., Iwama, M., Watanabe, R., Aramaki, K., Shimojima, A., Tatsumi, T. and Okubo, T., Chem. Mater. 21, 37193729 (2009).Google Scholar
Bendall, M. R. and Gordon, R. E., J. Magn. Reson. 53, 365385 (1983).Google Scholar
Hartmann, S. R. and Hahn, E. L., Phys. Rev. 128, 20422053 (1962).Google Scholar
Hayashi, S. and Hayamizu, K., Bull. Chem. Soc. Jpn. 64, 685687 (1991).CrossRefGoogle Scholar
Hayashi, S. and Hayamizu, K., Bull. Chem. Soc. Jpn. 64, 688690 (1991).Google Scholar