Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T07:16:52.908Z Has data issue: false hasContentIssue false

Low-Temperature Fabrication of Mesoporous Titania Thin Films

Published online by Cambridge University Press:  05 June 2017

Lin Song
Affiliation:
Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
Volker Körstgens
Affiliation:
Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
David Magerl
Affiliation:
Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
Bo Su
Affiliation:
Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
Thomas Fröschl
Affiliation:
Materialchemie, Chemie und Physik der Materialien, Universität Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
Nicola Hüsing
Affiliation:
Materialchemie, Chemie und Physik der Materialien, Universität Salzburg, Hellbrunnerstr. 34, 5020 Salzburg, Austria.
Sigrid Bernstorff
Affiliation:
Elettra - Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163,5 in AREA Science Park Basovizza, 34149 Trieste, Italy.
Peter Müller-Buschbaum*
Affiliation:
Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany.
*
Get access

Abstract

Mesoporous titania films are prepared via the polymer-template assisted sol-gel synthesis at low temperatures, using the titania precursor ethylene glycol-modified titanate (EGMT) and the diblock copolymer polystyrene-block-polyethyleneoxide (PS-b-PEO). UV-irradiation is chosen as a low temperature technique to remove the polymer template and thereby to obtain titania sponge-like nanostructures at processing temperatures below 100 °C. After different UV irradiation times, ranging for 0 h to 24 h, the surface and inner morphologies of the titania films are studied with scanning electron microscopy (SEM) and grazing incidence small-angle x-ray scattering (GISAXS), respectively. The evolution of the band gap energies is investigated using ultraviolet/visible (UV/Vis) spectroscopy. The findings reveal that 12 h UV-treatment is sufficient to remove the polymer template from the titania/PS-b-PEO composite films with a thickness of 80 nm, and the determined bad gap energies indicate an incomplete crystallization of the titania nanostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O’Regan, B. and Grätzel, M., Nature 353, 737 (1991).Google Scholar
Yella, A., Lee, H.-W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Diau, E. W.-G., Yeh, C.-Y., Zakeeruddin, S. M. and Grätzel, M., Science 334, 629 (2011).Google Scholar
Sui, R. and Charpentier, P., Chem. Rev. 112, 3057 (2012).CrossRefGoogle Scholar
Wang, W., Pröller, S., Niedermeier, M. A., Körstgens, V., Philipp, M., Su, B., Yu, S., Roth, S. V. and Müller-Buschbaum, P., ACS Appl. Mater. Interfaces 7, 602 (2015).Google Scholar
Terzian, R., Serpone, N., Minero, C. and Pelizzetti, E., J. Catalysis 128, 352 (1991)Google Scholar
Macak, J. M., Zlamal, M., Krysa, J. and Schmuki, P., Small 3, 300 (2007).Google Scholar
Wang, C., Yin, L., Zhang, L., Qi, Y., Lun, N. and Liu, N., Langmuir 26, 12841 (2010).CrossRefGoogle ScholarPubMed
Zuzuri, A. S. and MacDonald, N. C., Adv. Funct. Mater. 15, 396 (2005).Google Scholar
Rawolle, M., Niedermeier, M. A., Kaune, G., Perlich, J., Lellig, P., Memesa, M., Cheng, Y., Gutmann, J. S. and Müller-Buschbaum, P., Chem. Soc. Rev. 41, 5131 (2012).Google Scholar
Chen, X. and Mao, S. S., Chem. Rev. 107, 2891 (2007).Google Scholar
Fröschl, T., Hörmann, U., Kubiak, P., Kučerová, G., Pfanzelt, M., Weiss, C. K., Behm, R. J., Hüsing, N., Kaiser, U., Landfesterd, K. and Wohlfahrt-Mehrens, M., Chem. Soc. Rev. 41, 5313 (2012).Google Scholar
Fattakhova-Rohlfing, D., Zaleska, A. and Bein, T., Chem. Rev. 114, 9487 (2014).Google Scholar
Song, L., Wang, W., Pröller, S., Moseguí González, D., Schlipf, J., Schaffer, C. J., Peters, K., Herzig, E. M., Bernstorff, S., Bein, T., Fattakhova-Rohlfing, D. and Müller-Buschbaum, P., ACS Energy Lett. 2, 991 (2017).CrossRefGoogle Scholar
Cheng, Y.-J. and Gutmann, J. S., J. Am. Chem. Soc. 128, 4658 (2006).Google Scholar
Zhang, R., Elzatahry, A. A., Al-Deyab, S. S. and Zhao, D., Nano Today 7, 344 (2012).Google Scholar
Rawolle, M., Ruderer, M. A., Prams, S. M., Zhong, Q., Magerl, D., Perlich, J., Roth, S. V., Lellig, P., Gutmann, J. S. and Müller-Buschbaum, P., Small 7, 884 (2011).CrossRefGoogle Scholar
Niedermeier, M. A., Magerl, D., Zhong, Q., Nathan, A., Körstgens, V., Perlich, J., Roth, S. V. and Müller-Buschbaum, P., Nanotechnology 23, 145602 (2012).CrossRefGoogle Scholar
Grätzel, M., Nature 414, 338 (2001).CrossRefGoogle Scholar
Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., Cheng, H. M. and Lu, G. Q., Nature 453, 638 (2008).Google Scholar
Song, L., Wang, W., Körstgens, V., Moseguí González, D., Yao, Y., Minar, N. K., Feckl, J. M., Peters, K., Bein, T., Fattakhova-Rohlfing, D., Santoro, G., Roth, S. V. and Müller-Buschbaum, P., Adv. Funct. Mater. 26, 1498 (2016).Google Scholar
Niedermeier, M. A., Groß, I. and Müller-Buschbaum, P., J. Mater. Chem. A 1, 13399 (2013).Google Scholar
Yu, J., Su, Y. and Cheng, B., Adv. Funct. Mater. 17, 1984 (2007).Google Scholar
Liao, Y., Que, W., Jia, Q., He, Y., Zhang, J. and Zhong, P., J. Mater. Chem. 22, 7937 (2012).Google Scholar
Sarkar, K., Schaffer, C. J., Moseguí González, D., Naumann, A., Perlich, J. and Müller-Buschbaum, P., J. Mater. Chem. A 2, 6945 (2014).Google Scholar
Rawolle, M., Sarkar, K., Niedermeier, M. A., Schindler, M., Lellig, P., Gutmann, J. S., Moulin, J. F., Haese-Seiller, M., Wochnik, A. S., Scheu, C. and Müller-Buschbaum, P., ACS Appl. Mater. Interfaces 5, 719 (2013).Google Scholar
Alhasan, S., Khalilzadeh-Rezaie, F., Peale, R. and Oladeji, I., MRS Advances, 1(46), 3169 (2016).Google Scholar
Burschka, J., Dualeh, A., Kessler, F., Baranoff, E., Cevey-Ha, N., Yi, C., Nazeeruddin, M. K. and Grätzel, M., J. Am. Chem. Soc. 133, 18042 (2011).CrossRefGoogle Scholar
Reinke, M., Ponomarev, E., Kuzminykh, Y. and Hoffmann, P., ACS Comb. Sci. 17 (7), 413 (2015).Google Scholar
Liua, N., Chena, X., Zhang, J. and Schwank, J. W., Catal. Today 225, 34, (2014).Google Scholar
Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M. K. and Grätzel, M., Thin Solid Films 516, 4613 (2008).Google Scholar
Jiang, L.-C. and Zhang, W.-D., Electroanalysis 21(8), 988 (2009).CrossRefGoogle Scholar
Natarajan, C. and Nogami, G., J. Electrochem. Soc. 143(5), 1547 (1996).CrossRefGoogle Scholar
Körstgens, V., Pröller, S., Buchmann, T., Moseguí González, D., Song, L., Yao, Y., Wang, W., Werhahn, J., Santoro, G., Roth, S. V., Iglev, H., Kienberger, R. and Müller-Buschbaum, P., Nanoscale 7, 2900 (2015).Google Scholar
Oskam, G., Nellore, A., Penn, R. L. and Searson, P. C., J. Phys. Chem. B 107, 1734 (2003).CrossRefGoogle Scholar
Sugimoto, T., Adv. Colloid Interface Sci. 28, 65 (1987).Google Scholar
Su, B., Körstgens, V., Yao, Y., Magerl, D., Song, L., Metwalli, E., Bernstorff, S. and Müller-Buschbaum, P., J Sol-Gel Sci Technol. 81, 346 (2017).Google Scholar
Kaune, G., Memesa, M., Meier, R., Ruderer, M. A., Diethert, A., Roth, S. V., D’Acunzi, M., Gutmann, J. S. and Müller-Buschbaum, P., ACS Appl. Mater. Interfaces 12, 2862 (2009).Google Scholar
Guldin, S., Kolle, M., Stefik, M., Langford, R., Eder, D., Wiesner, U., and Steiner, U., Adv. Mater. 23, 3664 (2011).CrossRefGoogle Scholar
Han, C., Luque, R. and Dionysiou, D. D., Chem. Commun. 48, 1860 (2012).CrossRefGoogle Scholar
Wang, X., Liu, G., Wang, L., Pan, J., Lu, G. Q. and Cheng, H.-M., J. Mater. Chem. 21, 869 (2011).Google Scholar
Kaune, G., Haese-Seiler, M., Kampmann, R., Moulin, J. -F., Zhong, Q. and Müller-Buschbaum, P., J. Poly. Sci. Part B 48, 1628 (2010).CrossRefGoogle Scholar
Rawolle, M., Braden, E. V., Niedermeier, M. A., Magerl, D., Sarkar, K., Fröschl, T., Hüsing, N., Perlich, J. and Müller-Buschbaum, P., ChemPhysChem 13, 2412 (2012).Google Scholar
Song, L., Abdelsamie, A., Schaffer, C. J., Körstgens, V., Wang, W., Wang, T., Indari, E. D., Fröschl, T., Hüsing, N., Haeberle, T., Lugli, P., Bernstorff, S. and Müller-Buschbaum, P., Adv. Funct. Mater. 26, 7084 (2016).Google Scholar
Niedermeier, M. A., Rawolle, M., Lellig, P., Körstgens, V., Herzig, E. M., Buffet, A., Roth, S. V., Gutmann, J. S., Fröschl, T., Hüsing, N. and Müller-Buschbaum, P., ChemPhysChem 14, 597 (2013).Google Scholar
Rossmanith, R., Weiss, C. K., Geserick, J., Hüsing, N., Hörmann, U., Kaiser, U. and Landfester, K., Chem. Mater. 20, 5768 (2008).Google Scholar
Denkwitz, Y., Makosch, M., Geserick, J., Hörmann, U., Selve, S., Kaiser, U., Hüsing, N., and Behm, R. J., Appl. Catal. B 91, 470 (2009).Google Scholar
Jiang, X., Herricks, T. and Xia, Y., Adv. Mater. 15, 1205 (2003).Google Scholar
Jiang, X., Wang, Y., Herricks, T. and Xia, Y., J. Mater. Chem. 14, 695 (2004).Google Scholar
Müller-Buschbaum, P., Anal. Bioanal. Chem. 376, 3 (2003).Google Scholar
Li, T., Senesi, A. J. and Lee, B., Chem. Rev. 116 (18), 11128 (2016).Google Scholar
Lee, B., Park, I., Yoon, J., Park, S., Kim, J., Kim, K.-W., Chang, T. and Ree, M., Macromolecules 38, 4311 (2005).CrossRefGoogle Scholar
Wang, W., Schaffer, C. J., Song, L., Körstgens, V., Pröller, S., Dwi Indari, E., Wang, T., Abdelsamie, A., Bernstorff, S. and Müller-Buschbaum, P., J. Mater. Chem. A 3, 8324 (2015).Google Scholar
Renaud, G., Lazzari, R., Leroy, F., Surf. Sci. Rep. 64, 255 (2009).Google Scholar
Müller-Buschbaum, P., Adv. Mater. 26, 7692 (2014).CrossRefGoogle Scholar
Hamley, I. W. and Pedersen, J. S., J. Appl. Cryst. 27, 29 (1994).Google Scholar
Yoneda, Y., Phys. Rev. 131, 2010 (1963).Google Scholar
Erk, C., Brezesinski, T., Sommer, H., Schneider, R. and Janek, J., ACS Appl.Mater. Interfaces 5, 7299 (2013).Google Scholar
Wang, W., Guo, S., Herzig, E. M., Sarkar, K., Schindler, M., Magerl, D., Philipp, M., Perlich, J. and Müller-Buschbaum, P., J. Mater. Chem. A 4, 3743 (2016).Google Scholar
Rauscher, M., Paniago, R., Metzger, T.H., Kovats, Z., Domke, J., Peisl, J., Pfannes, H.-D., Schulze, J. and Eisele, I., J. Appl. Phys. 86, 6763 (1999).Google Scholar
Pedersen, J. S., J. Appl. Cryst. 27, 595 (1994).Google Scholar
Hosemann, R. and Bagchi, S. N., Direct Analysis of Diffraction by Matter. (North-Holland Publishing Co., Amsterdam, Netherlands 1962).Google Scholar
Leroy, F., Lazzari, R. and Renaud, G., Acta. Cryst. A 60, 565 (2004).Google Scholar
Schmidbauer, M., Hanke, M. and Köhler, R., Phys. Rev. B 71, 115323 (2005).CrossRefGoogle Scholar
Choi, S. Y., Mamak, M., Speakman, S., Chopra, N. and Ozin, G. A., Small 1, 226 (2005).Google Scholar
Stefi k, M., Song, J., Sai, H., Guldin, S., Boldrighini, P., Orilall, M. C., Steiner, U., Gruner, S. M and Wiesner, U., J. Mater. Chem. A 3,11478 (2015).Google Scholar
Karakaya, C., Türker, Y. and Dag, Ö, Adv. Funct. Mater. 23, 4002 (2013).Google Scholar
Sarkar, K., Schaffer, C. J., Moseguí González, D., Naumann, A., Perlich, J. and Müller-Buschbaum, P., J. Mater. Chem. A 2, 6945 (2014).CrossRefGoogle Scholar