Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T13:08:45.976Z Has data issue: false hasContentIssue false

A Low-Temperature Fabrication Method for WSe2 Films Grown from Nanocrystalline Precursors

Published online by Cambridge University Press:  10 June 2016

Christopher L. Exstrom*
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, U.S.A.
Scott A. Darveau
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, U.S.A.
Joshua S. Edgar
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, U.S.A.
C.J. Curry
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, U.S.A.
Michael P. Hanrahan
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE 68849-1150, U.S.A.
Qinglei Ma
Affiliation:
Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Matthew Hilfiker
Affiliation:
Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Aaron Ediger
Affiliation:
Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
Natale J. Ianno
Affiliation:
Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0511, U.S.A.
*
Get access

Abstract

WSe2 films have been fabricated using a low-temperature, two-step method involving the reaction of W(CO)6 and elemental selenium in refluxing (110 °C) toluene to form a nanocrystalline precursor consisting of amorphous tungsten and trigonal crystalline selenium. Drop cast or airbrush-deposited films of this precursor were annealed in an argon atmosphere using a two-step temperature ramp (250 °C for 15 min followed by 550 °C for 30 min). Raman and x-ray diffraction (XRD) characterization as well as the measured bandgaps of the resulting films are consistent with (002)-oriented WSe2 and are compared to the characterization of films produced via selenization of sputtered tungsten films in closed quartz tubes at 875 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wadia, C., Alivastos, A.P., Kammen, D.M., Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle Scholar
Jäger-Waldau, A., Lux-Steiner, M. Ch., Bucher, E., Solid State Phenomena 37-38, 479 (1994).Google Scholar
Jäger-Waldau, A., Bucher, E., Thin Solid Films 200, 157 (1991).CrossRefGoogle Scholar
Vogt, M., Lux-Steiner, M. Ch., Dolatzoglou, Ρ., Bucher, E., presented at the 1988 Photovoltaic Solar Energy Conference, Florence, Italy (unpublished).Google Scholar
Ma, Q., Kyureghian, H., Banninga, J.D., Ianno, N.J., Mater. Res. Soc. Symp. Proc. 1670, San Francisco, CA, 2014, mrss14-1670-e01-02 doi:10.1557/opl.2014.739.Google Scholar
Jebaraj Devadasan, J., Sanjeeviraja, C., Jayachandran, M., Mater. Chem. Phys. 77, 397 (2002).Google Scholar
Hankare, P.P., Manikshete, A.H., Sathe, D.J., Chate, P.A., Rathod, K.C., Mater. Chem. Phys. 113, 183 (2009).Google Scholar
Grigoriev, S.N., Fominski, V.Yu., Gnedovets, A.G., Romanov, R.I., Appl. Surf. Sci. 258, 7000 (2012).Google Scholar
Yu, X., Prévot, M.S., Guijarro, N., Sivula, K., Nature Commun. 6, 7596 (2015).CrossRefGoogle Scholar
Pouzet, J., Bernede, J. C., Khellil, A., Essaidi, H., Benhida, S., Thin Solid Films 208, 259(1992).Google Scholar
Khelil, A., Essaidi, H., Bernede, J.C., Bouacheria, A., Pouzet, J., J. Phys.: Condens. Matter 6, 8527 (1994).Google Scholar
Ma, Q., Ph.D. Thesis, University of Nebraska-Lincoln, 2016.Google Scholar
Duphil, D., Bastide, S., Rouchaud, J.C., Pastol, J.L., Legendre, B., Lévy-Clément, C., Nanotechnol. 15, 828 (2004).Google Scholar
Malm, J., Sajavaara, T., Karppinen, M., Chem. Vapor Deposition 18, 245 (2012).CrossRefGoogle Scholar
Nandi, D.K., Sen, U.K., Sinha, S., Dhara, A., Mitra, S., Sarkar, S.K., Phys. Chem. Chem. Phys. 17, 17445 (2015).Google Scholar
Hanrahan, M.P., Edgar, J.S., Darveau, S.A., Exstrom, C.L., presented at the 249th Meeting of the American Chemical Society, Denver, CO, 2015 (unpublished).Google Scholar
Yang, Z., Cingarapu, S., Klabunde, K.J., Chem. Lett. 38, 252 (2009).Google Scholar
Almond, M.J., Drew, M.G.B., Redman, H., Rice, D.A., Polyhedron 19, 2127 (2000).Google Scholar
Tonndorf, P., Schmidt, R., Böttger, P., Zhang, X., Börner, J., Liebig, A., Albrecht, M., Kloc, C., Gordau, O., Zahn, D.R.T., de Vasconcellos, S.M., Bratschitsch, R., Optics Express 21, 4908 (2013).CrossRefGoogle Scholar
Ding, Y., Wang, Y., Ni, J., Shi, L., Shi, S., Tang, W., Physica B 406, 2254 (2011)Google Scholar
Sahin, H., Tongay, S., Horzum, S., Fan, W., Zhou, J., Li, J., Wu, J., Peters, F.M., Phys. Rev B. 87, 165409 (2013)Google Scholar
Wang, G., Marie, X., Gerber, I., Amand, T., Lagarde, D., Bouet, L., Vidal, M., Balocchi, A., Urbaszek, B., Phys Rev. Lett. 114, 097403 (2015)Google Scholar