Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T20:54:19.411Z Has data issue: false hasContentIssue false

Long-term Room Temperature Instability in Thermal Conductivity of InGaZnO Thin Films

Published online by Cambridge University Press:  22 February 2016

Boya Cui
Affiliation:
Applied Physics Program, Northwestern University, Evanston, IL 60208, U.S.A Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, U.S.A
D. Bruce Buchholz
Affiliation:
Material Science and Engineering, Northwestern University, Evanston, IL 60208, U.S.A
Li Zeng
Affiliation:
Applied Physics Program, Northwestern University, Evanston, IL 60208, U.S.A
Michael Bedzyk
Affiliation:
Applied Physics Program, Northwestern University, Evanston, IL 60208, U.S.A Material Science and Engineering, Northwestern University, Evanston, IL 60208, U.S.A
Robert P. H. Chang
Affiliation:
Applied Physics Program, Northwestern University, Evanston, IL 60208, U.S.A Material Science and Engineering, Northwestern University, Evanston, IL 60208, U.S.A
Matthew Grayson*
Affiliation:
Applied Physics Program, Northwestern University, Evanston, IL 60208, U.S.A Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208, U.S.A
*
Get access

Abstract

The cross-plane thermal conductivities of InGaZnO (IGZO) thin films in different morphologies were measured on three occasions within 19 months, using the 3ω method at room temperature 300 K. Amorphous (a-), semi-crystalline (semi-c-) and crystalline (c-) IGZO films were grown by pulsed laser deposition (PLD), followed by X-ray diffraction (XRD) for evaluation of film quality and crystallinity. Semi-c-IGZO shows the highest thermal conductivity, even higher than the most ordered crystal-like phase. After being stored in dry low-oxygen environment for months, a drastic decrease of semi-c-IGZO thermal conductivity was observed, while the thermal conductivity slightly reduced in c-IGZO and remained unchanged in a-IGZO. This change in thermal conductivity with storage time can be attributed to film structural relaxation and vacancy diffusion to grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nomura, K., Ohta, H., Ueda, K., Kamiya, T., Hirano, M., and Hosono, H., Science 300, 1269 (2003).Google Scholar
Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Harano, M., and Hosono, H., Nature 432, 488 (2004).Google Scholar
Hosono, H., J. Non. Cryst. Solids 352, 851 (2006).Google Scholar
Kamiya, T., Nomura, K., and Hosono, H., Sci. Technol. Adv. Mater. 11, 044305 (2010).Google Scholar
Chung, W.-F., Chang, T.-C., Li, H.-W., Chen, S.-C., Chen, Y.-C., Tseng, T.-Y., and Tai, Y.-H., Appl. Phys. Lett. 98, 152109 (2011).Google Scholar
Gosain, D.P. and Tanaka, T., Jpn. J. Appl. Phys. 48, 03B018 (2009).Google Scholar
Chowdhury, M.D.H., Mativenga, M., Um, J.G., Mruthyunjaya, R.K., Heiler, G.N., Tredwell, T.J., and Jang, J., IEEE Trans. Electron Devices 62, 869 (2015).Google Scholar
Seo, D.K., Shin, S., Cho, H.H., Kong, B.H., Whang, D.M., and Cho, H.K., Acta Mater. 59, 6743 (2011).Google Scholar
Cui, B., Zeng, L., Keane, D., Bedzyk, M.J., Buchholz, D.B., Chang, R.P.H., Smith, J., Marks, T.J., Yu, X., Facchetti, A.F., and Grayson, M. (submitted).Google Scholar
Cahill, D.G., Katiyar, M., and Abelson, J.R., Phys. Rev. B 50, 6077 (1994).Google Scholar
Yoshikawa, T., Yagi, T., Oka, N., Jia, J., Yamashita, Y., Hattori, K., Seino, Y., Taketoshi, N., Baba, T., and Shigesato, Y., Appl. Phys. Express 6, 021101 (2013).Google Scholar
Yang, B., Liu, W.L., Liu, J.L., Wang, K.L., and Chen, G., Appl. Phys. Lett. 81, 3588 (2002).Google Scholar
Zhou, C., Cui, B., Vurgaftman, I., Canedy, C.L., Kim, C.S., Kim, M., Bewley, W.W., Merritt, C.D., Abell, J., Meyer, J.R., and Grayson, M., Appl. Phys. Lett. 105, 261905 (2014).Google Scholar
Martins, R., Barquinha, P., Ferreira, I., Pereira, L., Gonçalves, G., and Fortunato, E., J. Appl. Phys. 101, 044505 (2007).Google Scholar
Yang, H. and Morelli, D.T., J. Electron. Mater. 41, 1720 (2012).Google Scholar
Zhang, X. and Sun, Z., Rare Met. 30, 317 (2011).Google Scholar
Tsuchihira, H., Oda, T., and Tanaka, S., Fusion Eng. Des. 85, 1814 (2010).Google Scholar
Katcho, N.A., Carrete, J., Li, W., and Mingo, N., Phys. Rev. B 90, 094117 (2014).Google Scholar
Che, J., Cagin, T., and Goddard, W.A. III, Nanotechnology 11, 65 (2000).Google Scholar