Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T05:34:16.976Z Has data issue: false hasContentIssue false

Lithium-Ion Capacitors and Hybrid Lithium-Ion Capacitors—Evaluation of Electrolyte Additives Under High Temperature Stress

Published online by Cambridge University Press:  03 July 2019

Jonathan Boltersdorf*
Affiliation:
United States Army Research Laboratory, FCDD-RLS-DC, Adelphi, MD20783-1138, USA
Jin Yan
Affiliation:
General Capacitor LLC & INTL, INC. Tallahassee, FL32304, USA
Samuel A. Delp
Affiliation:
United States Army Research Laboratory, FCDD-RLS-DC, Adelphi, MD20783-1138, USA General Technical Services, Adelphi, MD20783-1197, USA
Ben Cao
Affiliation:
General Capacitor LLC & INTL, INC. Tallahassee, FL32304, USA
Jianping P. Zheng
Affiliation:
Department of Electrical and Computer Engineering, Florida A&M University-Florida State University, Tallahassee, FL32310-6046, USA
T. Richard Jow
Affiliation:
United States Army Research Laboratory, FCDD-RLS-DC, Adelphi, MD20783-1138, USA
Jeffrey A. Read
Affiliation:
United States Army Research Laboratory, FCDD-RLS-DC, Adelphi, MD20783-1138, USA
*
Get access

Abstract

Lithium-ion capacitors (LICs) and Hybrid LICs (H-LICs) were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes for LICs and lithium iron phosphate (LiFePO4-LFP)/AC composite cathodes for H-LICs. The room temperature rate performance was evaluated after the initial LIC and H-LIC cell formation as a function of the electrolyte additives. The capacity retention was measured after charging at high temperature conditions, while the design factor explored was electrolyte additive formulation, with a focus on their stability. The high temperature potential holds simulate electrochemical energy materials under extreme environments and act to accelerate the failure mechanisms associated with cell degradation to determine robust electrolyte/additive combinations.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cao, W.J., Shih, J., Zheng, J.P., Doung, T., J. Power Sources 257, 388-393 (2014).CrossRefGoogle Scholar
Boltersdorf, J., Delp, S.A., Yan, J., Cao, B., Zheng, J.P., Jow, T.R., Read, J.A., J. Power Sources 373, 20-30 (2018).CrossRefGoogle Scholar
Sivakkumar, S.R., Pandolfo, A.G., Electrochim. Acta 65, 280-287 (2012).CrossRefGoogle Scholar
Han, P., Xu, G., Han, X., Zhao, J., Zhou, X., Cui, G., Adv. Energy Mater. 8, 1801243 (2018).CrossRefGoogle Scholar
Cao, W.J., Zheng, J.P., J. Power Sources 213, 180-185 (2012).CrossRefGoogle Scholar
Böckenfeld, N., Kühnel, R.S., Passerini, S., Winter, M., Balducci, A., J. Power Sources 196, 4136-4142 (2011).CrossRefGoogle Scholar
Sun, X., Zhang, X., Zhang, H., Xu, N., Wang, K., Ma, Y., J. Power Sources 270, 318-325 (2014).CrossRefGoogle Scholar
Vlad, A., Singh, N., Rolland, J., Melinte, S., Ajayan, P.M., Gohy, J.F., Sci. Rep. 4, 4315 (2014).CrossRefGoogle Scholar
Shellikeri, A., Yturriaga, S., Zheng, J.S., Cao, W., Hagen, M., Read, J.A., Jow, T.R., Zheng, J.P., J. Power Sources 392, 285-295 (2018).CrossRefGoogle Scholar
Smith, P.H., Tran, T.N., Jiang, T.L., Chung, J., J. Power Sources 243, 982-992 (2013).CrossRefGoogle Scholar
Cheng, F., Liang, J., Tao, Z., Chen, J., Adv. Mater. 23, 1695-715 (2011).CrossRefGoogle Scholar
Gauthier, M., Carney, T.J., Grimaud, A., Giordano, L., Pour, N., Chang, H.H., Fenning, D.P., Lux, S.F., Paschos, O., Bauer, C., Maglia, F., Lupart, S., Lamp, P., Shao-Horn, Y., J. Phys. Chem. Lett. 6, 4653-72 (2015).CrossRefGoogle Scholar
Hagen, M., Cao, W.J., Shellikeri, A., Adams, D., Chen, X.J., Brandt, W., Yturriaga, S.R., Wu, Q., Read, J.A., Jow, T.R., Zheng, J.P., J. Power Sources 379, 212-218 (2018).CrossRefGoogle Scholar
Cao, W.J., Yan, J., and Zheng, J. P., J. Electrochem. Soc. 164, A2164-A2170 (2017).Google Scholar
Cao, W.J., Greenleaf, M., Li, Y.X., Adams, D., Hagen, M., Doung, T., Zheng, J.P., J. Power Sources 280, 600-605 (2015).CrossRefGoogle Scholar
Delp, S.A., Borodin, O., Olguin, M., Eisner, C.G., Allen, J.L., Jow, T.R., Electrochim. Acta 209, 498-510 (2016).CrossRefGoogle Scholar
Haregewoin, A.M., Wotango, A.S., Hwang, B.-J., Energy Environ. Sci. 9, 1955-1988 (2016).CrossRefGoogle Scholar
Xu, K., Chem. Rev. 114, 11503-11618 (2014).CrossRefGoogle Scholar
Xu, K., Chem. Rev. 104, 4303-4418 (2004).CrossRefGoogle Scholar
Zheng, J.P.. and Cao, W. J., J. Electrochem. Soc. 160, A1572-A1576 (2013).Google Scholar
Cao, W. J., Adams, D., Doung, T., and Zheng, J. P., J. Electrochem. Soc. 161, A2087-A2092 (2014).CrossRefGoogle Scholar
Han, J.G., Lee, S.J., Lee, J., Kim, J.S., Lee, K.T., and Choi, N.S., ACS Appl. Mater. Interfaces 7, 8319-29 (2015).CrossRefGoogle ScholarPubMed
Zheng, J.-S., Zhang, L., Shellikeri, A., Cao, W., Wu, Q., and Zheng, J.P., Sci. Rep. 7, 41910 (2017).CrossRefGoogle Scholar
Shi, Z., Zhanga, J., Wanga, J., Shi, J., and Wang, C., Electrochim. Acta 153, 476-483 (2015).CrossRefGoogle Scholar