Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T12:25:20.906Z Has data issue: false hasContentIssue false

Lignin-Derived Carbon Fibers as Efficient Heterogeneous Solid Acid Catalysts for Esterification of Oleic Acid

Published online by Cambridge University Press:  04 June 2018

Shiba Adhikari*
Affiliation:
Material Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN37831
Zach Hood
Affiliation:
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN37831 School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA30332
Nidia Gallego
Affiliation:
Material Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN37831
Cristian Contescu*
Affiliation:
Material Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN37831
*
Get access

Abstract

The production of biodiesel by the esterification of oleic acid, as an example of free fatty acid (FFA), was explored by using a new solid acid catalyst derived from lignin, a highly abundant low-cost biomass material. The catalyst was synthesized from lignin-derived carbon fiber by straightforward sulfonation and contains 1.86 mmol/g of sulfonic acid (-SO3H) groups. The catalyst was characterized by a variety of techniques including PXRD, TGA, TPD-MS, SEM, and XPS to understand the surface chemistry and the result of sulfonation. It was found that the sulfonated lignin-derived carbon fiber (CF-SO3H) catalyst was very efficient at esterifying oleic acid at 80 oC in 4 hours, with 10 wt. % catalyst (in terms of oleic acid content) and at a 10:1 molar ratio of methanol: oleic acid with a yield of 92%. Furthermore, the catalyst can be reused with no significant loss in activity after 4 cycles. Hence, synthesizing solid acid catalysts from lignin-derived carbon fiber affords a novel strategy for producing biodiesel via ‘green chemistry’.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gerpen, J.V., Biodiesel Process. Prod. 86, 10971107 (2005).Google Scholar
Ma, F., Hanna, M.A., Bioresour. Technol. 70, 115 (1999).CrossRefGoogle Scholar
Hassan, M.H., Kalam, M.A., 5th BSME Int. Conf. Therm. Eng. 56, 3953 (2013).Google Scholar
Moser, B.R., Vitro Cell. Dev. Biol. - Plant 45, 229266 (2009).CrossRefGoogle Scholar
Pohl, N.L.B., Streff, J.M., Brokman, S., J. Chem. Educ. 89 10531056 (2012).CrossRefGoogle Scholar
Xing, R., Liu, Y., Wang, Y., Chen, L., Wu, H., Jiang, Y., He, M., Wu, P., Spec. Issue Dedic. Profr. Ruren Xu Occas. His 75th Birthd. 105, 4148 (2007).Google Scholar
Guo, F., Fang, Z., Biodiesel - Feedstock Process. Technol. (2011).Google Scholar
Hood, Z.D., Adhikari, S.P., Li, Y., Naskar, A.K., Figueroa-Cosme, L., Xia, Y., Chi, M., Wright, M.W., Lachgar, A., Paranthaman, M.P., ChemistrySelect 2, 49754982 (2017).CrossRefGoogle Scholar
Zong, M.-H., Duan, Z.-Q., Lou, W.-Y., Smith, T.J., Wu, H., Green Chem 9, 434437 (2007).CrossRefGoogle Scholar
Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M., Hayashi, S., Chem. Mater. 18, 30393045 (2006).CrossRefGoogle Scholar
Okuhara, T., Chem. Rev. 102, 36413666 (2002).CrossRefGoogle Scholar
Semwal, S., Arora, A.K., Badoni, R.P., Tuli, D.K., Bioresour. Technol. 102, 21512161 (2011).CrossRefGoogle Scholar
Liu, R., Wang, X., Zhao, X., Feng, P., Carbon 46, 16641669 (2008).CrossRefGoogle ScholarPubMed
Lee, A.F., Bennett, J.A., Manayil, J.C., Wilson, K., Chem Soc Rev 43, 78877916 (2014).CrossRefGoogle Scholar
Chen, G., Fang, B., Bioresour. Technol. 102, 26352640 (2011).CrossRefGoogle Scholar
Baig, R.B.N., Verma, S., Nadagouda, M.N., Varma, R.S., Sci. Rep. 6, 39387 (2016).CrossRefGoogle Scholar
Deshmane, C.A., Wright, M.W., Lachgar, A., Rohlfing, M., Liu, Z., Le, J., Hanson, B.E., Bioresour. Technol. 147, 597604 (2013).CrossRefGoogle Scholar
Guo, F., Xiu, Z.-L., Liang, Z.-X., Appl. Energy 98, 4752 (2012).CrossRefGoogle Scholar
Arancon, R.A., Barros, H.R. Jr, Balu, A.M., Vargas, C., Luque, R., Green Chem 13, 31623167 (2011).CrossRefGoogle Scholar
Fraile, J.M., García-Bordejé, E., Roldán, L., J. Catal. 289, 7379 (2012).CrossRefGoogle Scholar
Fraile, J.M., García-Bordejé, E., Pires, E., Roldán, L., J. Catal. 324, 107118 (2015).CrossRefGoogle Scholar
Gupta, P., Paul, S., Catal. Today 236, 153170 (2014).CrossRefGoogle Scholar
Chand, S., J. Mater. Sci. 35, 13031313 (2000).CrossRefGoogle Scholar
Chatterjee, S., Saito, T., ChemSusChem 8, 39413958 (2015) (2012).CrossRefGoogle Scholar
Baker, D.A., Rials, T.G., J. Appl. Polym. Sci. 130, 713728 (2013).CrossRefGoogle Scholar
Mainka, H., Täger, O., Körner, E., Hilfert, L., Busse, S., Edelmann, F.T., Herrmann, A.S., J. Mater. Res. Technol. 4, 283296 (2015).CrossRefGoogle Scholar
Baker, D.A., Gallego, N.C., Baker, F.S., J. Appl. Polym. Sci. 124, 227234 (2012).CrossRefGoogle Scholar
Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., Griffith, W., Carbon 40, 29132920 (2002).CrossRefGoogle Scholar
Fang, W., Yang, S., Wang, X.-L., Yuan, T.-Q., Sun, R.-C., Green Chem 19, 17941827 (2017).CrossRefGoogle Scholar
Wang, S.-X., Yang, L., Stubbs, L.P., Li, X., He, C., ACS Appl. Mater. Interfaces 5, 1227512282 (2013).CrossRefGoogle ScholarPubMed
Chatterjee, S., Saito, T., Rios, O., Johs, A., in:, Green Technol. Environ., American Chemical Society pp. 203218 (2014).Google Scholar
Oroumei, A., Fox, B., Naebe, M., ACS Sustain. Chem. Eng. 3, 758769 (2015).CrossRefGoogle Scholar
Contescu, C.I., Baker, F.S., Hunt, R.D., Collins, J.L., Burchell, T.D., J. Nucl. Mater. 375, 3851 (2008).CrossRefGoogle Scholar
Fu, X., Chen, J., Song, X., Zhang, Y., Zhu, Y., Yang, J., Zhang, C., J. Am. Oil Chem. Soc. 92, 495502 (2015).CrossRefGoogle Scholar
Hara, M., Top. Catal. 53, 805810 (2010).CrossRefGoogle Scholar
Siril, P.F., Shiju, N.R., Brown, D.R., Wilson, K., Appl. Catal. Gen. 364, 95100 (2009).CrossRefGoogle Scholar
Qie, L., Chen, W., Xiong, X., Hu, C., Zou, F., Hu, P., Huang, Y., Adv. Sci. 2, (2015).CrossRefGoogle Scholar
Mar, W.W., Somsook, E., ISEEC 32, 212218 (2012).Google Scholar
Wang, X., Liu, R., Waje, M.M., Chen, Z., Yan, Y., Bozhilov, K.N., Feng, P., Chem. Mater. 19, 23952397 (2007).CrossRefGoogle Scholar
Wang, C., Gui, X., Yun, Z., React. Kinet. Mech. Catal. 113, 211223 (2014).CrossRefGoogle Scholar
Wang, Y., Wang, D., Tan, M., Jiang, B., Zheng, J., Tsubaki, N., Wu, M., ACS Appl. Mater. Interfaces 7, 2676726775 (2015).CrossRefGoogle Scholar
Chang, B., Fu, J., Tian, Y., Dong, X., J. Phys. Chem. C 117, 62526258 (2013).CrossRefGoogle Scholar