Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T20:05:39.189Z Has data issue: false hasContentIssue false

Light-enhanced Electrochemical Energy Storage of Synthetic Melanin on Conductive Glass Substrates

Published online by Cambridge University Press:  16 December 2019

Ri Xu
Affiliation:
Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, H3C 3A7, Canada
Abdelaziz Gouda
Affiliation:
Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, H3C 3A7, Canada
Maria Federica Caso
Affiliation:
Nanofaber Spin-Off at ENEA, Casaccia Research Centre, Via Anguillarese 301, Roma, 00123, Italy
Francesca Soavi
Affiliation:
Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum Università di Bologna, Via Selmi, 2, 40126Bologna, Italy
Clara Santato*
Affiliation:
Department of Engineering Physics, Polytechnique Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC, H3C 3A7, Canada
*
*Correspondence and requests for materials should be addressed to C.S. (e-mail: [email protected])
Get access

Abstract

Eumelanin is a redox active, quinone-based biopigment, featuring a broad band absorption in the UV-Vis region. The combination of the redox and optical properties makes eumelanin an interesting candidate to explore light-assisted storage technologies. Electrodes of melanin on indium tin oxide (ITO) current collectors were investigated for their morphological and voltammetric characteristics in aqueous electrolytes. Under solar light, we observed that the capacity and the capacitance of the melanin electrodes significantly increase with respect to the dark conditions (by 63% and 73%, respectively).

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

International Energy Agency, “World Energy Outlook 2017,” 2017.Google Scholar
Armaroli, N. and Balzani, V., Powering planet Earth: energy solutions for the future. John Wiley and Sons: New York City, USA, 2012.Google Scholar
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., and Van Schalkwijk, W., “Nanostructured materials for advanced energy conversion and storage devices,” in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group; World Scientific: Singapore, Singapore, 2011, pp. 148159.Google Scholar
Vlachopoulos, N. and Hagfeldt, A., “Photobatteries and Photocapacitors,” in Molecular Devices for Solar Energy Conversion and Storage, Springer: New York City, USA, 2018, pp. 281325.10.1007/978-981-10-5924-7_8CrossRefGoogle Scholar
Zhou, Y. et al. , “Polyanthraquinone-based nanostructured electrode material capable of high-performance pseudocapacitive energy storage in aprotic electrolyte,” Nano Energy, vol. 15, pp. 654661, 2015.CrossRefGoogle Scholar
Song, Z. et al. , “A quinone-based oligomeric lithium salt for superior Li-organic batteries,” Energy Environ. Sci., vol. 7, no. 12, pp. 40774086, 2014.CrossRefGoogle Scholar
Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F., and Bettinger, C. J., “Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices.,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 52, pp. 20912–7, 2013.CrossRefGoogle ScholarPubMed
Liang, Y., Tao, Z., and Chen, J., “Organic electrode materials for rechargeable lithium batteries,” Adv. Energy Mater., vol. 2, no. 7, pp. 742769, 2012.CrossRefGoogle Scholar
Vonlanthen, D., Lazarev, P., See, K. A., Wudl, F., and Heeger, A. J., “A Stable Polyaniline-Benzoquinone-Hydroquinone Supercapacitor,” Adv. Mater., vol. 26, no. 30, pp. 50955100, 2014.CrossRefGoogle ScholarPubMed
Gao, C.-Y., Zhao, L., and Wang, M.-X., “Stabilization of a reactive polynuclear silver carbide cluster through the encapsulation within a supramolecular cage.,” J. Am. Chem. Soc., vol. 134, no. 2, pp. 824–7, Jan. 2012.CrossRefGoogle ScholarPubMed
Liang, Y. et al. , “Universal quinone electrodes for long cycle life aqueous rechargeable batteries,” Nat. Mater., vol. 16, pp. 841850, 2017.CrossRefGoogle ScholarPubMed
Janoschka, T. et al. , “An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials,” Nature, vol. 527, no. 7576, pp. 7881, 2015.CrossRefGoogle ScholarPubMed
Gerhardt, M. R., Galvin, C. J., Huskinson, B., Marshak, M. P., Suh, C., and Chen, X., “A metal-free organic-inorganic aqueous flow battery,” Nature, vol. 505, pp. 195198, 2014.Google Scholar
Naoi, K., Suematsu, S., Hanada, M., and Takenouchi, H., “Enhanced cyclability of π-π stacked supramolecular (1, 5-diaminoanthraquinone) oligomer as an electrochemical capacitor material,” J. Electrochem. Soc., vol. 149, no. 4, pp. 472477, 2002.CrossRefGoogle Scholar
Sun, T., Li, Z., Wang, H., Bao, D., Meng, F., and Zhang, X., “A Biodegradable Polydopamine-Derived Electrode Material for High- Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries,” Angew. Chemie, vol. 128, no. 36, pp. 1082010824, 2016.10.1002/ange.201604519CrossRefGoogle Scholar
Song, Z. and Zhou, H., “Towards sustainable and versatile energy storage devices: An overview of organic electrode materials,” Energy Environ. Sci., vol. 6, no. 8, pp. 22802301, 2013.CrossRefGoogle Scholar
Mukhopadhyay, A., Jiao, Y., Katahira, R., Ciesielski, P. N., Himmel, M., and Zhu, H., “Heavy Metal-Free Tannin from Bark for Sustainable Energy Storage,” Nano Lett., vol. 17, no. 12, pp. 78977907, 2017.CrossRefGoogle ScholarPubMed
Di Mauro, E., Xu, R., Soliveri, G., and Santato, C., “Natural melanin pigments and their interfaces with metal ions and oxides: emerging concepts and technologies,” MRS Commun., vol. 7, no. 2, pp. 141151, 2017.CrossRefGoogle Scholar
Jastrzebska, M., Kocot, A., and Tajber, L., “Photoconductivity of synthetic dopa-melanin polymer,” J. Photochem. Photobiol. B Biol., vol. 66, no. 3, pp. 201206, 2002.10.1016/S1011-1344(02)00268-3CrossRefGoogle ScholarPubMed
Meredith, P., Bettinger, C. J., Irimia-Vladu, M., Mostert, A. B., and Schwenn, P. E., “Electronic and optoelectronic materials and devices inspired by nature,” Rep. Prog. Phys., vol. 76, no. 3, p. 034501, 2013.CrossRefGoogle Scholar
Kumar, P. et al. , “Melanin-based flexible supercapacitors,” J. Mater. Chem. C, vol. 4, no. 40, pp. 95169525, 2016.CrossRefGoogle Scholar
Kim, Y. J., Wu, W., Chun, S. E., Whitacre, J. F., and Bettinger, C. J., “Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells,” Adv. Mater., vol. 26, no. 38, pp. 65726579, 2014.10.1002/adma.201402295CrossRefGoogle ScholarPubMed
Mula, G., Manca, L., Setzu, S., and Pezzella, A., “Photovoltaic properties of PSi impregnated with eumelanin,” Nanoscale Res. Lett., vol. 7, pp. 121, 2012.CrossRefGoogle ScholarPubMed
Antidormi, A., Melis, C., Canadell, E., and Colombo, L., “Assessing the Performance of Eumelanin/Si Interface for Photovoltaic Applications,” J. Phys. Chem. C, vol. 121, no. 21, pp. 1157611584, 2017.CrossRefGoogle Scholar
Tran, M. L., Powell, B. J., and Meredith, P., “Chemical and Structural Disorder in Eumelanins - A Possible Explanation for Broad Band Absorbance,” Biophys. J., vol. 90, no. 3, p. 28, 2005.Google Scholar
Chen, C., Chuang, C., Cao, J., Ball, V., Ruch, D., and Buehler, M. J., “Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin.,” Nat. Commun., vol. 5, p. 3859, 2014.CrossRefGoogle ScholarPubMed
Povlich, L. K., Le, J., Kim, J., and Martin, D. C., “Poly(5,6-dimethoxyindole-2-carboxylic acid) (PDMICA): A Melanin-Like Polymer with Unique Electrochromic and Structural Properties,” Macromolecules, vol. 43, pp. 37703774, 2010.CrossRefGoogle Scholar
Pezzella, A. et al. , “Stem cell-compatible eumelanin biointerface fabricated by chemically controlled solid state polymerization,” Mater. Horiz., vol. 2, no. 2, pp. 212220, 2015.CrossRefGoogle Scholar
Pezzella, A., D’Ischia, M., Napolitano, A., Palumbo, A., and Prota, G., “An Integrated Approach to the Structure of Sepia Melanin . Evidence for a High Proportion of Degraded 5 , 6-Dihydroxyindole-2- carboxylic Acid Units in the Pigment Backbone,” Tetrahedron, vol. 53, no. 24, pp. 82818286, 1997.CrossRefGoogle Scholar
Panzella, L. et al. , “Atypical structural and π-electron features of a melanin polymer that lead to superior free-radical-scavenging properties,” Angew. Chemie - Int. Ed., vol. 52, no. 48, pp. 1268412687, 2013.CrossRefGoogle Scholar
Wünsche, J. et al. , “Protonic and electronic transport in hydrated thin films of the pigment eumelanin,” Chem. Mater., vol. 27, no. 2, pp. 436442, 2015.10.1021/cm502939rCrossRefGoogle Scholar
Xu, R., Gouda, A., Caso, M. F., Soavi, F., and Santato, C., “Melanin: A Greener Route To Enhance Energy Storage under Solar Light,” ACS Omega, vol. 4, no. 7, pp. 1224412251, 2019.CrossRefGoogle ScholarPubMed
Brousse, T., Bélanger, D., and Long, J. W., “To Be or Not To Be Pseudocapacitive?,” J. Electrochem. Soc., vol. 162, no. 5, pp. A5185A5189, 2015.CrossRefGoogle Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications,2nd edition. John Wiley and Sons: New York City, USA, 2000.Google Scholar