Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T09:30:53.719Z Has data issue: false hasContentIssue false

Large Swelling Capacities of Crosslinked Poly(N-isopropylacrylamide) Gels in Organic Solvents

Published online by Cambridge University Press:  05 November 2018

María V. Martinez
Affiliation:
Institute of Research in Energy Technologies and Advanced Materials (IITEMA). National Council of Scientific and Technical Research (CONICET)-National University of Rio Cuarto., X5804ZAB, Rio Cuarto (Córdoba), ARGENTINA
María A. Molina
Affiliation:
Institute of Research in Energy Technologies and Advanced Materials (IITEMA). National Council of Scientific and Technical Research (CONICET)-National University of Rio Cuarto., X5804ZAB, Rio Cuarto (Córdoba), ARGENTINA
Silvestre Bongiovanni Abel
Affiliation:
Institute of Research in Energy Technologies and Advanced Materials (IITEMA). National Council of Scientific and Technical Research (CONICET)-National University of Rio Cuarto., X5804ZAB, Rio Cuarto (Córdoba), ARGENTINA
Cesar A. Barbero*
Affiliation:
Institute of Research in Energy Technologies and Advanced Materials (IITEMA). National Council of Scientific and Technical Research (CONICET)-National University of Rio Cuarto., X5804ZAB, Rio Cuarto (Córdoba), ARGENTINA
*
Get access

Abstract

PNIPAM hydrogels are widely studied materials which swell in a great extent in water and water like solvents (e.g. alcohols). The hydrophilic nature of PNIPAM networks is very attractive however it is an important disadvantage at the moment of encapsulating hydrophobic drugs, which minimize their use in other fields. In this work we studied the swelling in different solvent mixtures with water and also in pure nonaqueous solvents, some of them immiscible with water. Accordingly, PNIPAM gels swell strongly in highly polar solvents (e.g. chloroform) but it does not swell in slightly polar solvents (e.g. toluene). The main interaction between the solvent and the polymer chain seems to involve the hydrogen bonding with the amide group, according to the calculated Hansen parameters (δh). It is possible to swell the gel in binary or ternary mixtures containing toluene. In that way, non-polar substances can be loaded inside the gel to change its properties. As a proof of concept, polyaniline (PANI) solubilized in chloroform using camphorsulfonate as solubilizing counterion. The obtained nanocomposites become sensitive to pH changing color and conductivity when exposed to basic or acidic aqueous solutions.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Verhulsel, M., Vignes, M., Descroix, S., Malaquin, L., Vignjevic, D. M. and Viovy, J.-L., Biomaterials, 35, 1816-1832, (2014).CrossRefGoogle Scholar
Dragan, E. S., Chemical Engineering Journal, 243, 572-590 (2014).CrossRefGoogle Scholar
Caló, E. and Khutoryanskiy, V. V., European Polymer Journal, 65, 252-267. (2015)CrossRefGoogle Scholar
Ozay, H. and Ozay, O., Chemical Engineering Journal, 232, 364-371, (2013).CrossRefGoogle Scholar
Yun Zhang, W. and James Yang, C., Chemical Communications, 47, 9312-9314, (2011).Google Scholar
Nishiyabu, R., Ushikubo, S., Kamiya, Y. and Kubo, Y., J. Mater. Chem.A, 2, 15846-15852 (2014).CrossRefGoogle Scholar
Bischofberger, I., Calzolari, D. C. and Trappe, V., Soft Matter, 10, 8288-8295(2014).CrossRefGoogle Scholar
Hüther, A., Xu, X. and Maurer, G., Fluid Phase Equilibria, 219, 231-244, (2004).CrossRefGoogle Scholar
Ozmen, M. M. and Okay, O., European Polymer Journal, 39, (2003) 877-886.CrossRefGoogle Scholar
Martínez, M. V., Rivarola, C. R., Miras, M. C. and Barbero, C. A., Sensors and Actuators B: Chemical, 241, 19-32, (2017).CrossRefGoogle Scholar
Jeon, S.S., Kim, C., Lee, T.H., Lee, Y.W., Do, K., Ko, J., Im, S.S., J. Phys. Chem. C, 116, 2274322748, (2012).CrossRefGoogle Scholar
Morales, G.M., Llusa, M., Miras, M.C., Barbero, C., Polymer, 38,5247-5250, (1997)CrossRefGoogle Scholar
Ganji, F., Vasheghani-Farahani, S., Vasheghani-Farahani, E., Iran. Polym. J., 19,375-398, (2010)Google Scholar
Rivero, R.E., Alustiza, F., Rodríguez, N., Bosch, P., Miras, M.C., Rivarola, C.R., Barbero, C.A., React. Funct. Polym., 97,77-85, (2015)CrossRefGoogle Scholar
Costa, R.O. and Freitas, R.F., Polymer 43, 5879-5885 (2002)CrossRefGoogle Scholar
Martínez, M.V., Bongiovanni Abel, S., Rivero, R., Miras, M.C., Rivarola, C.R., Barbero, C.A., Polymer, 78 , 94-103, (2015)CrossRefGoogle Scholar
Bongiovanni Abel, S., Yslas, E.I, Rivarola, C.R., Barbero, C. A, Nanotechnology, 29, (2018) Nr. 125604CrossRefGoogle Scholar
Acevedo, D. A., Lasagni, A. F., Barbero, C. A., Mücklich, F., Adv. Mater., 19, 1272- 1275 (2007)CrossRefGoogle Scholar
Martinez, M.V., Molina, M., Barbero, C.A., J. Physical Chemistry, B, in press (2018). DOI:10.1021/acs.jpcb.8b07625.Google Scholar