Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T13:44:29.175Z Has data issue: false hasContentIssue false

Investigation on MoS2(1-x)Te2x Mixture Alloy Fabricated by Co-sputtering Deposition

Published online by Cambridge University Press:  31 January 2017

Y. Hibino*
Affiliation:
Meiji University, Kanagawa 214-8571, Japan.
S. Ishihara
Affiliation:
Meiji University, Kanagawa 214-8571, Japan. Research Fellow of the Japan Society for the Promotion of Science, Tokyo 102-0083, Japan.
N. Sawamoto
Affiliation:
Meiji University, Kanagawa 214-8571, Japan.
T. Ohashi
Affiliation:
Tokyo Institute of Technology, Kanagawa 226-8502, Japan.
K. Matsuura
Affiliation:
Tokyo Institute of Technology, Kanagawa 226-8502, Japan.
H. Machida
Affiliation:
Gas-Phase Growth Ltd., Tokyo 184-0012, Japan.
M. Ishikawa
Affiliation:
Gas-Phase Growth Ltd., Tokyo 184-0012, Japan.
H. Sudo
Affiliation:
Gas-Phase Growth Ltd., Tokyo 184-0012, Japan.
H. Wakabayashi
Affiliation:
Tokyo Institute of Technology, Kanagawa 226-8502, Japan.
A. Ogura
Affiliation:
Meiji University, Kanagawa 214-8571, Japan.
*
Get access

Abstract

We report the synthesis of MoS2(1-x)Te2x by co-sputtering deposition and effect of mixture on its bandgap. The deposition was carried out at room temperature, and the sputtering power on individual MoS2 and MoTe2 targets were varied to obtain films with different compositions. Investigation with X-ray photoelectron spectroscopy confirmed the formation of Mo-Te and Mo-S bonds after post-deposition annealing (PDA), and one of the samples exhibited composition ratio of Mo:S:Te = 1:1.2:0.8 and 1:1.9:0.1 achieving 1:2 ratio of metal to chalcogen. Bandgap of MoS1.2Te0.8 and MoS1.9Te0.1 was evaluated with Tauc plot analysis from the extinction coefficient obtained by spectroscopic ellipsometry measurements. The obtained bandgaps were 1.0 eV and 1.3 eV. The resulting bandgap was lower than that of bulk MoS2 and higher than that of bulk MoTe2 suggesting mixture of both materials was achieved by co-sputtering.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yoon, Y., Ganapathi, K., and Salahuddin, S., Nano Lett. 11, 3768 (2011).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
He, K. Poole, C., Mak, K. F., and Shan, J., Nano Lett. 13, 2931 (2013).CrossRefGoogle Scholar
Liu, H., Antwi, K. K. A., Chua, S., and Chi, D., Nanoscale 6, 624 (2014).CrossRefGoogle ScholarPubMed
Mann, J., Ma, Q., Odenthal, P. M., Isarraraz, M., Le, D., Preciado, E., Barroso, D., Yamaguchi, K., von Son Palacio, G., Nguyen, A., Tran, T., Wurch, M., Nguyen, A., Klee, V., Bobek, S., Sun, D., Heinz, T. F., Rahman, T. S., Kawakami, R., and Bartels, L., Adv. Mater. 26, 1399 (2014).CrossRefGoogle Scholar
Mak, K. F., He, K., Shan, J., and Heinz, T. F., Nat. Nanotechnol. 7, 494 (2012).CrossRefGoogle Scholar
Xiao, D., Liu, G.B., Feng, W., Xu, X., and Yao, W., Phys. Rev. Lett. 108, 196802 (2012).CrossRefGoogle Scholar
Zheng, Z. Q., Zhang, T. M., Yao, J. D., Zhang, Y., Xu, J. R., and Yang, G. W., Nanotechnol. 27, 225501 (2016)Google Scholar
Zheng, Z. Q., Yao, J. D., and Yang, G. W., J. Mater. Chem. C. 4, 8094 (2016)CrossRefGoogle Scholar
Komsa, H. P. and Krasheninnikov, A. V., J. Phys. Chem. Lett. 3, 3652 (2012).CrossRefGoogle Scholar
Ishihara, S., Hibino, Y., Sawamoto, N., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Wakabayashi, H., and Ogura, A., ECS J. Solid State Sci. Technol. 5, Q3012 (2016).CrossRefGoogle Scholar
Ohashi, T., Suda, K., Ishihara, S., Sawamoto, N., Yamaguchi, S., Matsuura, K., Kakushima, K., Sugii, N., Nishiyama, A., Kataoka, Y., Natori, K., Tsutsui, K., Iwai, H. Ogura, A., and Wakabayashi, H., Jpn. J. Appl. Phys. 54, 04DN08 (2015).Google Scholar
Tao, J. Q., Chai, J. W., Lu, X., Wong, L. M., Wong, T. I., Pan, J. S., Xiong, Q. H., Chi, D. Z. and Wang, S., J., Nanoscale 7, 2497 (2015)CrossRefGoogle Scholar
Ling, Z. P., Yang, R., Chai, J. W., Wang, S. J., Leong, W. S., Tong, Y., Lei, D., Zhow, Q., Gong, X., Chi, D. Z., and Ang, K. –W., OPTICS EXPRESS 23, 13580 (2015)CrossRefGoogle Scholar
Terrones, H., Corro, E. D., Feng, S., Poumirol, J. M., Rhodes, D., Smirnov, D., Pradhan, N. R., Lin, Z., Nguyen, M. A. T., Elías, A. L., Mallouk, T. E., Balicas, L., Pimenta, M. A., Terrones, M., Sci. Rep. 4, 4215 (2014)CrossRefGoogle Scholar
Kamiya, T., Nomura, K., and Hosono, H., Phys. Status. Solidi A 206, 860 (2009)CrossRefGoogle Scholar
Shaaban, E. R., Abd El-Sadek, M. S., El-Hagary, M., and Yahia, I. S., Phys. Scr. 86, 015702 (2012).CrossRefGoogle Scholar
Ishihara, S., Hibino, Y., Sawamoto, N., Suda, K., Ohashi, T., Matsuura, K., Machida, H., Ishikawa, M., Sudoh, H., Wakabayashi, H. and Ogura, A., Jpn. J. Appl. Phys. 55, 04EJ07 (2016)CrossRefGoogle Scholar
Lezama, I. G., Ubaldini, A., Longobardi, M., Giannini, E., Renner, C., Kuzmenko, A. B., and Morpurgo, A. F., 2D Materials 1, 2 (2014).CrossRefGoogle Scholar