Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T12:33:53.609Z Has data issue: false hasContentIssue false

Investigation of BMI-PF6 Ionic Liquid/Graphite Interface Using Frequency Modulation Atomic Force Microscopy

Published online by Cambridge University Press:  04 June 2018

Harshal P. Mungse*
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto606-8501, Japan
Takashi Ichii
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto606-8501, Japan
Toru Utsunomiya
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto606-8501, Japan
Hiroyuki Sugimura
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Kyoto606-8501, Japan
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Structural analysis on interfaces between ionic liquids (ILs) and solid substrates is an important study for not only the basic fundamental aspects but also many technological processes. In the present work, we utilized frequency modulation atomic force microscopy (FM-AFM) based on a quartz tuning fork sensor to elucidate the structure of interface between 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6) IL and highly ordered pyrolytic graphite (HOPG) surface. It was observed that this IL form solvation layers at their interface, with ∼0.5-0.57 nm thickness of each layer. We have compared our experimental results with previously reported results from molecular dynamics simulation study, and combination of classical molecular dynamics and density functional theory calculations in order to understand the IL/HOPG interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

REFERENCES

Galinski, M., Lewandowski, A., Stepniak, I., Electrochim. Acta 51, 55675580 (2006).CrossRefGoogle Scholar
MacFarlane, D. R., Tachikawa, N., Forsyth, M., Pringle, J. M., Howlett, P. C., Elliott, G. D., Davis, J. H., et al. . Energy Environ. Sci., 7, 232250 (2014).CrossRefGoogle Scholar
Torimoto, T., Tsuda, T., Okazaki, K., Kuwabata, S., Adv. Mater. 22, 11961221 (2010).CrossRefGoogle Scholar
Liu, H., Liu, Y., Li, J., Phys. Chem. Chem. Phys. 12, 16851697 (2010).CrossRefGoogle Scholar
Lovelock, K. R. J., Villar-Garcia, I. J., Maier, F., Steinrück, H. P., Licence, P., Chem. Rev. 110, 51585190 (2010).CrossRefGoogle Scholar
Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., Scrosati, B., Nat. Mater. 8, 621629 (2009).CrossRefGoogle Scholar
Steinrück, H. P., Phys. Chem. Chem. Phys. 14, 50105029 (2012).CrossRefGoogle Scholar
Minami, I., Molecules 14, 22862305 (2009).CrossRefGoogle Scholar
Suarez, P., Selbach, V., Dllius, J., Einloft, S., Electrochim. Acta, 42, 2533 (1997).CrossRefGoogle Scholar
Welton, T., Chem. Rev. 99, 20712083 (1999).CrossRefGoogle Scholar
Cadena, C., Anthony, J. L., Shah, J. K., Morrow, T. I., Brennecke, J. F., Maginn, E. J., J. Am. Chem. Soc. 126 (16), 53005308 (2004).CrossRefGoogle Scholar
Lu, W., Fadeev, A., Qi, B., Smela, E., Mattes, B., Ding, J., Spinks, G., Mazurkiewicz, J., Zhou, D., Wallace, G., Macfarlane, D., Forsyth, S., Forsyth, M., Science 297, 983987 (2002).CrossRefGoogle Scholar
Kato, S., Takeyama, Y., Maruyama, S., Matsumoto, Y., Cryst. Growth Des. 10, 36083611 (2010).CrossRefGoogle Scholar
Zhou, Y., Qu, J., ACS Appl. Mater. Interfaces 9, 32093232 (2017).CrossRefGoogle Scholar
Atkin, R., Warr, G. G., J. Phys. Chem. C 111, 51625168 (2007).CrossRefGoogle Scholar
Li, H., Endres, F., Atkin, R., Phys. Chem. Chem. Phys. 15, 1462414633 (2013).CrossRefGoogle Scholar
Aliaga, C., Santos, C. S., Baldelli, S., Phys. Chem. Chem. Phys. 9, 36833700 (2007).CrossRefGoogle Scholar
Mezger, M., Shiröder, H., Reichert, H., Schramm, S., Okasinski, J. S., Schöder, S., Honkimäki, V., Deutsch, M., Ocko, B. M., Ralston, J., et al. . Sicence 322, 424428 (2008).CrossRefGoogle Scholar
Atkin, R., El Abedin, S. Z., Hayes, R., Gasparotto, L. H. S., Borisenko, N., Endres, F., J. Phys. Chem. C 113, 1326613272 (2009).CrossRefGoogle Scholar
Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Appl. Phys. Lett. 64, 17381740 (1994).CrossRefGoogle Scholar
Fukuma, T., Kobayashi, K., Matsushige, K., Yamada, H., Appl. Phys. Lett. 86, 193108 (2005).CrossRefGoogle Scholar
Fukuma, T., Kimura, M., Kobayashi, K., Matsushige, K., Yamada, H., Rev. Sci. Instrum. 76, 053704 (2005).CrossRefGoogle Scholar
Fukuma, T., Kobayashi, K., Matsushige, K., Yamada, H., Appl. Phys. Lett. 87, 034101 (2005).CrossRefGoogle Scholar
Suzuki, K., Oyabu, N., Kobayashi, K., Matsushige, K., Yamada, H., Appl. Phys. Exp. 4, 125102 (2011).CrossRefGoogle Scholar
Wutscher, E., Giessibl, F., Rev. Sci. Instrum. 82, 093703 (2011).CrossRefGoogle Scholar
Jimenez, D. M., Chacon, E., Tarazona, P., Garcia, R., Nat. Commun. 7, 12164, (2016).CrossRefGoogle Scholar
Kuchuk, K., Sivan, U., Nano Lett. 18, 27332737 (2018).CrossRefGoogle Scholar
Hayes, R., Borisenko, N., Tam, M. K., Howlett, P. C., Endres, F., Atkin, R., J. Phys. Chem. C 115, 68556863 (2011).CrossRefGoogle Scholar
Black, J. M., Walters, D., Labuda, A., Feng, G., Hillesheim, P. C., Dai, S., Cummings, P. T., Kalinin, S. V., Proksch, R., Balke, N., Nano Lett. 13, 59545960 (2013).CrossRefGoogle Scholar
Yokota, Y., Harada, T., Fukui, K.-I., Chem. Commun. 46, 86278629 (2010).CrossRefGoogle Scholar
Ichii, T., Negami, M., Sugimura, H., J. Phys. Chem. C 118, 2680326807 (2014).CrossRefGoogle Scholar
Georgakilas, V., Tiwari, J. N., Kemp, K. C., Perman, J. A., Bourlinos, A. B., Kim, K. S., Zboril, R., Chem. Rev. 116, 54645519 (2016).CrossRefGoogle Scholar
C-Valdez, A., Shaffer, M. S. P., Boccaccini, A. R., J. Phys. Chem. B 117, 15021515 (2013).CrossRefGoogle Scholar
Georgakilas, V., Demeslis, A., Ntararas, E., Kouloumpis, A., Dimos, K., Gournis, D., Kocman, M., Otyepka, M., Zboril, R., Adv. Funct. Mater. 25, 14811487 (2015).CrossRefGoogle Scholar
Peng, S. J., Li, L. L., Han, X. P., Sun, W. P., Srinivasan, M., Mhaisalkar, S. G., Cheng, F. Y., Yan, Q. Y., Chen, J., Ramakrishna, S., Angew. Chem. Int. Ed. 53, 1259412599 (2014).Google Scholar
Frackowiak, E. and Beguin, F., Carbon 40, 17751787 (2002).CrossRefGoogle Scholar
Futaba, D. N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M. and Iijima, S., Nat. Mater., 5, 987994 (2006).CrossRefGoogle Scholar
Zhu, Y., Murali, S., Stoller, M. D., Ganesh, K. J., Cai, W., Ferreira, P. J., Pirkle, A., Wallace, R. M., Cychosz, K. A., Thommes, M., Su, D., Stach, E. A. and Ruoff, R. S., Science 332, 15371541 (2011).CrossRefGoogle Scholar
Jurado, L. A., E-Marzal, R. M., Sci. Rep. 7, 112 (2017).CrossRefGoogle Scholar
Sha, M., Zhang, F., Wu, G., Fang, H., Wang, C., Chen, S., Zhang, Y., Hu, J., J. Chem. Phys. 128, 134504 (2008).Google Scholar
Paek, E., Park, A. J., Hwang, G. S., J. Electrochem. Soc. 160(1), A1A10 (2013).CrossRefGoogle Scholar
Kislenko, S. A., Samoylov, I. S., Amirov, R. H., Phys. Chem. Chem. Phys. 11, 55845590 (2009).CrossRefGoogle Scholar
Ichii, T., Fujimura, M., Negami, M., Murase, K., Sugimura, H., Jpn. J. Appl. Phys. 51, 15 (2012).CrossRefGoogle Scholar
Black, J. M., Zhu, M., Zhang, P., Unocic, R. R., Guo, D., Okatan, M. B., Dai, S., Cummings, P. T., Kalinin, S. V., Feng, G., Balke, N., Sci. Rep. 6, 112 (2016).Google Scholar
Yokota, Y., Miyamoto, H., Imanishi, A., Inagaki, K., Morikawa, Y., Fukui, K.-I., Phys. Chem. Chem. Phys. 20, 66686676 (2018).CrossRefGoogle Scholar
Israelachvili, J., Wennerstrom, H., Nature 379, 219225 (1996).CrossRefGoogle Scholar