Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T17:03:42.478Z Has data issue: false hasContentIssue false

Investigating the Phase-Morphology of PLLA-PCL Multiblock Copolymer / PDLA Blends Cross-linked Using Stereocomplexation

Published online by Cambridge University Press:  16 December 2019

Victor Izraylit
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
Oliver E. C. Gould
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
Karl Kratz
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstrasse 55, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
*
Get access

Abstract

The macroscale function of multicomponent polymeric materials is dependent on their phase-morphology. Here, we investigate the morphological structure of a multiblock copolymer consisting of poly(L-lactide) and poly(ε-caprolactone) segments (PLLA-PCL), physically cross-linked by stereocomplexation with a low molecular weight poly(D-lactide) oligomer (PDLA). The effects of blend composition and PLLA-PCL molecular structure on the morphology are elucidated by AFM, TEM and SAXS. We identify the formation of a lattice pattern, composed of PLA domains within a PCL matrix, with an average domain spacing d0 = 12 – 19 nm. The size of the PLA domains were found to be proportional to the block length of the PCL segment of the copolymer and inversely proportional to the PDLA content of the blend. Changing the PLLA-PCL / PDLA ratio caused a shift in the melt transition Tm attributed to the PLA stereocomplex crystallites, indicating partial amorphous phase dilution of the PLA and PCL components within the semicrystalline material. By elucidating the phase structure and thermal character of multifunctional PLLA-PCL / PDLA blends, we illustrate how composition affects the internal structure and thermal properties of multicomponent polymeric materials. This study should facilitate the more effective incorporation of a variety of polymeric structural units capable of stimuli responsive phase transitions, where an understanding the phase-morphology of each component will enable the production of multifunctional soft-actuators with enhanced performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hillmyer, M.A. and Tolman, W.B., Acc. Chem. Res. 47, 2390 (2014).CrossRefGoogle Scholar
Albertsson, A.-C. and Varma, I.K., Biomacromolecules 4, 1466 (2003).CrossRefGoogle Scholar
Farah, S., Anderson, D.G. and Langer, R., Adv. Drug Del. Rev. 107, 367 (2016).CrossRefGoogle Scholar
Allen, T.M. and Cullis, P.R., Science 303, 1818 (2004).CrossRefGoogle Scholar
Saini, P., Arora, M. and Kumar, M.N.V.R., Adv. Drug Del. Rev. 107, 47 (2016).CrossRefGoogle Scholar
Auras, R., Harte, B. and Selke, S., Macromol. Biosci. 4, 835 (2004).CrossRefGoogle Scholar
Hiljanen-Vainio, M., Varpomaa, P., Seppälä, J. and Törmälä, P., Macromol. Chem. Phys. 197, 1503 (1996).CrossRefGoogle Scholar
Liu, H. and Zhang, J., J. Polym. Sci., Part B: Polym. Phys. 49, 1051 (2011).CrossRefGoogle Scholar
Fasolka, M.J. and Mayes, A.M., Annu. Rev. Mater. Res. 31, 323 (2001).CrossRefGoogle Scholar
Kim, J.K., Yang, S.Y., Lee, Y. and Kim, Y., Progress in Polymer Science (Oxford) 35, 1325 (2010).CrossRefGoogle Scholar
Lendlein, A. and Gould, O.E.C., Nat. Rev. Mater. 4, 116 (2019).CrossRefGoogle Scholar
Koning, C., Van Duin, M., Pagnoulle, C. and Jerome, R., Progress in Polymer Science (Oxford) 23, 707 (1998).CrossRefGoogle Scholar
Jiang, L., Wolcott, M.P. and Zhang, J., Biomacromolecules 7, 199 (2006).CrossRefGoogle Scholar
Garlotta, D., J. Polym. Environ. 9, 63 (2001).CrossRefGoogle Scholar
Labet, M. and Thielemans, W., Chem. Soc. Rev. 38, 3484 (2009).CrossRefGoogle Scholar
Yang, J.-m., Chen, H.-l., J.-w. You and J.C. Hwang, 29, 657 (1997).Google Scholar
Dell’Erba, R., Groeninckx, G., Maglio, G., Malinconico, M. and Migliozzi, A., Polymer 42, 7831 (2001).CrossRefGoogle Scholar
Botlhoko, O.J., Ramontja, J. and Ray, S.S., Polym. Degrad. Stab. 154, 84 (2018).CrossRefGoogle Scholar
Newman, D., Laredo, E., Bello, A., Grillo, A., Feijoo, J.L. and Muller, A.J., Macromolecules 42, 5219 (2009).CrossRefGoogle Scholar
Mannion, A.M., Bates, F.S. and MacOsko, C.W., Macromolecules 49, 4587 (2016).CrossRefGoogle Scholar
Laredo, E., Prutsky, N., Bello, A., Grimau, M., Castillo, R.V., Müller, A.J. and Dubois, P., European Physical Journal E 23, 295 (2007).CrossRefGoogle Scholar
Han, W., Liao, X., Yang, Q., Li, G., He, B., Zhu, W. and Hao, Z., RSC Advances 7, 22515 (2017).CrossRefGoogle Scholar
Yang, D.-d., Liu, W., Zhu, H.-m., Wu, G., Chen, S.-c., Wang, X.-l. and Wang, Y.-z., ACS Appl. Mater. Interfaces 10, 26594 (2018).CrossRefGoogle Scholar
Tsuji, H., Adv. Drug Del. Rev. 107, 97 (2016).CrossRefGoogle Scholar
Wanamaker, C.L., Tolman, W.B. and Hillmyer, M.A., Macromolecular Symposia 283-284, 130 (2009).CrossRefGoogle Scholar
Xiong, Z., Zhang, X., Wang, R.R., De Vos, S., Wang, R.R., Joziasse, C.A.P. and Wang, D., Polymer 76, 98 (2015).CrossRefGoogle Scholar
Jikei, M., Takeyama, Y., Yamadoi, Y., Shinbo, N., Matsumoto, K., Motokawa, M., Ishibashi, K. and Yamamoto, F., Polym. J. 47, 657 (2015).CrossRefGoogle Scholar
Izraylit, V., Private Communication.Google Scholar
Perego, G., Vercellio, T. and Balbontin, G., Die Makromolekulare Chemie 194, 2463 (1993).CrossRefGoogle Scholar
Crescenzi, V., Manzini, G., Calzolari, G. and Borri, C., Eur. Polym. J. 8, 449 (1972).CrossRefGoogle Scholar
Tsuji, H., Macromol. Biosci. 5, 569 (2005).CrossRefGoogle Scholar
Lendlein, A. and Kelch, S., Angew. Chem. Int. Ed. 41, 2034 (2002).3.0.CO;2-M>CrossRefGoogle Scholar
de Jong, S.J., van Dijk-Wolthuis, W.N.E.E., Kettenes-Van Den Bosch, J.J., Schuyl, P.J.W.W. and Hennink, W.E., Macromolecules 31, 6397 (1998).CrossRefGoogle Scholar
Pensec, S., Leroy, M., Akkouche, H. and Spassky, N., Polym. Bull. 45, 373 (2000).CrossRefGoogle Scholar
Stoyanov, O.V., Khuzakhanov, R.M., Stoyanova, L.F., Gerasimov, V.K., Chalykh, A.E., Aliev, A.D. and Vokal’, M.V., Polymer Science Series D 4, 118 (2011).CrossRefGoogle Scholar
Sen, K., Mukherjee, B., Bhattacharyya, A.S., Sanghi, L.K., Bhowmick, K. and Centre, R.T., 157, 45 (1990).Google Scholar