Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:53:22.245Z Has data issue: false hasContentIssue false

Investigating the decomposition pathways and hydrogen storage capacity of V, Cr, and Fe amino borohydrides

Published online by Cambridge University Press:  23 May 2016

Zachary J. Huba*
Affiliation:
NRC Postdoctoral Associate, Chemistry Division, US Naval Research Laboratory, Washington, DC 20375
Matilde Portnoy
Affiliation:
HBCU Summer Student, Chemistry Division, US Naval Research Laboratory, Washington, DC
Kristen A. Colwell
Affiliation:
NREIP Summer Student, Chemistry Division, US Naval Research Laboratory, Washington, DC
Albert E. Epshteyn
Affiliation:
Chemistry Division, US Naval Research Laboratory, Washington DC 20375
*
Get access

Abstract

Cr, V, and Fe amino borohydride complexes were synthesized using a solution based approach. Thermogravimetric Analysis with simultaneous Differential Scanning Calorimetry was used to investigate their decomposition behavior. The synthesized Cr and Fe complexes exhibited significant hydrogen release around 100 °C. The synthesized V complex showed a large mass loss at temperatures between 50 °C and 100 °C and release of amine byproducts. FTIR of decomposed intermediates showed the decomposition of Cr amino borohydride occurs through the simultaneous loss of hydrogen from both the borohydride and amino ligands, while the Fe complex displays preferential dehydrogenation of the borohydride over the amino ligand. The decomposed products take on a BN type structure when heated to 400 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grochala, W. and Edwards, P. P., Chemical Reviews 104 (3), 12831315 (2004).Google Scholar
Orimo, S.-i., Nakamori, Y., Eliseo, J. R., Zuettel, A. and Jensen, C. M., Chemical Reviews 107 (10), 41114132 (2007).Google Scholar
Möhr, S., Müller-Buschbaum, H., Grin, Y. and Von Schnering, H. G., Zeitschrift für anorganische und allgemeine Chemie 622 (6), 10351037 (1996).Google Scholar
Li, H.-W., Yan, Y., Orimo, S.-i., Züttel, A. and Jensen, C. M., Energies 4 (1), 185214 (2011).Google Scholar
Dionne, M., Hao, S. and Gambarotta, S., Canadian journal of chemistry 73 (7), 11261134 (1995).Google Scholar
Soloveichik, G. L., Andrus, M. and Lobkovsky, E. B., Inorganic chemistry 46 (10), 37903791 (2007).Google Scholar
Kissinger, H. E., Analytical Chemistry 29 (11), 17021706 (1957).Google Scholar
Summerscales, O. T. and Gordon, J. C., Dalton Transactions 42 (28), 1007510084 (2013).CrossRefGoogle Scholar
Roedern, E. and Jensen, T. R., Inorganic Chemistry 54 (21), 1047710482 (2015).Google Scholar
Jepsen, L. H., Ley, M. B., Filinchuk, Y., Besenbacher, F. and Jensen, T. R., ChemSusChem 8 (8), 14521463 (2015).CrossRefGoogle Scholar