Published online by Cambridge University Press: 11 January 2018
With the rising interest in oceanic monitoring, climate awareness and surveillance, the scientific community need for developing autonomous, self-sustaining Unmanned Underwater Vehicles (UUVs) increased as well. Limitations on the size, maneuverability, power consumption, and available on-site maintenance of these UUVs make a number of proposed technologies to power them harder to implement than others; solar energy harvesting stands as one of the more promising candidates to address the need for a long-term energy supply for UUVs due to its relatively small size and ease of deployment. Studies show research groups focusing on the use of Si cells (amorphous and crystalline), InGaP, and more recently Organic Photovoltaics to convert the attenuated solar spectrum under shallow depths (no deeper than 9.1 m) into electrical energy used or stored by the UUV’s power management system (P. P. Jenkins et al. 2014; Walters et al. 2015). In our study, we consider the ternary compound In1-xTlxP that allows for varying the quantum efficiency of the cell, and by extension the overall harvesting efficiency of the system by altering the Tl content (x) in the compound. In1-xTlxP on InP is a low strain system since the compound exhibits very little change in its lattice constant with changing Tl content due to the comparable atomic size and forces of In and Tl allowing for relatively easy growth on InP substrates. The study focuses on studying the spectral response and comparing the performance of an optimized single junction In1-xTlxP cells to In1-yGayP cells while accounting for the optical losses of the solar irradiance underwater for various depths.