Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T20:50:09.904Z Has data issue: false hasContentIssue false

Interfacial Effects of UV-Ozone Treated Sol-Gel Processable ZnO for Hybrid Photodetectors and Thin Film Transistors

Published online by Cambridge University Press:  03 July 2019

Alec Pickett*
Affiliation:
Department of Physics and Astronomy, University of Missouri, Columbia, MO65211, USA
Aiswarya A. Mohapatra
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
Suman Ray
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
Christopher Robledo
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO65897, USA
Kartik Ghosh
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO65897, USA
Satish Patil
Affiliation:
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore560012, India
Suchismita Guha
Affiliation:
Department of Physics and Astronomy, University of Missouri, Columbia, MO65211, USA
*
Get access

Abstract

Hybrid organic-inorganic semiconducting interfaces have attracted attention in photodiodes and field-effect transistors (FETs) due to the realization of intrinsic p-n junctions and their mechanical flexibility. With the difficulty of developing high-mobility n-type organic semiconductors due to the necessity of low LUMO levels and ambient environment stability, solution processable inorganic materials are an excellent alternative. ZnO is an intrinsic n-type semiconductor which is non-toxic and sol-gel processable, creating avenues for film patterning and fully solution processed devices. We report the improvement of electron mobilities in ZnO FETs through simple UV-Ozone processing which reduces lattice defects within the film and at the SiO2/ZnO interface. Treated ZnO films yield electron mobilities close to 10-2 cm2/Vs and on/off current ratios of 104 while non-treated films have mobilities on the order of 10-5 cm2/Vs and an order of magnitude lower on/off current ratios. Treated films also yield improved photoresponsivity and detectivity in hybrid ZnO-organic photodetectors.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Janotti, A. and Van de Walle, C. G., Rep. Prog. Phys. 72 (12), 126501 (2009).CrossRefGoogle Scholar
Wang, J., Chen, R., Xiang, L. and Komarneni, S., Ceramics International 44 (7), 7357-7377 (2018).CrossRefGoogle Scholar
Sekine, N., Chou, C.-H., Kwan, W. L. and Yang, Y., Org. Electron. 10 (8), 1473-1477 (2009).CrossRefGoogle Scholar
Pickett, A., Mohapatra, A., Laudari, A., Khanra, S., Ram, T., Patil, S. and Guha, S., Org. Electron. 45, 115-123 (2017).CrossRefGoogle Scholar
Dileep, K., Panchakarla, L. S., Balasubramanian, K., Waghmare, U. V. and Datta, R., J. Appl. Phys. 109 (6), 063523 (2011).CrossRefGoogle Scholar
Li, D., Qin, W., Zhang, S., Liu, D., Yu, Z., Mao, J., Wu, L., Yang, L. and Yin, S., RSC Advances 7 (10), 6040-6045 (2017).CrossRefGoogle Scholar
Khafe, A. B. M., Sakai, W., Watanabe, H., Yamauchi, H., Kuniyoshi, S., Sakai, M. and Kudo, K., Japanese Journal of Applied Physics 53 (5S1), 05FF07 (2014).CrossRefGoogle Scholar
Djurišić, A. B., Leung, Y. H., Tam, K. H., Hsu, Y. F., Ding, L., Ge, W. K., Zhong, Y. C., Wong, K. S., Chan, W. K., Tam, H. L., Cheah, K. W., Kwok, W. M. and Phillips, D. L., Nanotechnology 18 (9), 095702 (2007).CrossRefGoogle Scholar
Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X. and Cai, W., Adv. Funct. Mater. 20 (4), 561-572 (2010).CrossRefGoogle Scholar
Dahiya, A. S., Sporea, R. A., Poulin-Vittrant, G. and Alquier, D., Sci. Rep. 9 (1), 2979 (2019).CrossRefGoogle Scholar
Moghe, D., Yu, P., Kanimozhi, C., Patil, S., Guha, S., Appl. Phys. Lett. 99 (23), 3 (2011).CrossRefGoogle Scholar
Moghe, D., Dutta, G. K., Patil, S. and Guha, S., Phys. Chem. Chem. Phys. 16 (9), 4291-4298 (2014).CrossRefGoogle Scholar
Chiu, J.-M. and Tai, Y., ACS Appl. Mater. Interfaces 5 (15), 6946-6950 (2013).CrossRefGoogle Scholar
Musselman, K. P., Albert-Seifried, S., Hoye, R. L. Z., Sadhanala, A., Muñoz-Rojas, D., MacManus-Driscoll, J. L. and Friend, R. H., Adv. Funct. Mater. 24 (23), 3562-3570 (2014).CrossRefGoogle Scholar