Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:34:34.576Z Has data issue: false hasContentIssue false

Interface-Controlled Carrier Transport in Metal-Lutetium Oxide-Metal Structures Deposited by Electron-Beam Evaporation Technique

Published online by Cambridge University Press:  02 May 2017

K. Mahmood*
Affiliation:
Department of Physics, Government College University, Faisalabad, 38100, Pakistan.
Nadeem Sabir
Affiliation:
Department of Physics, Government College University, Faisalabad, 38100, Pakistan.
*
Get access

Abstract

Nano-thin films of Lu2O3 with 80nm thickness have been deposited on metal-coated glass substrate in metal-insulator-metal (MIM) geometry by electron-beam evaporation technique. High field and temperature dependent electrical characterization on grown MIM structures have been investigated in symmetric electrode configuration using Al, Cr or Cu metals. The temperature dependent I-T characteristic features have been found to support the conduction mechanism across MIM systems to be an electrode-limited process except for Al-Lu2O3-Al device, which show Poole-Frenkel mechanism in high electric field region. The associated parameters such as activation energy (∆E), coefficient of barrier lowering (β) and effective height of Schottky barrier at zero biasing (Фo) have been evaluated at different values of temperature and electric field to further investigate the dominent conduction mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Darmawan, P., Lee, P.S., Setiawan, Y., Lai, J.C., Yang, P., Vac, J.. Sci. Technol. B 25(4), 1203 (2007).Google Scholar
Wiktorczyk, T., Non-Cryst, J.. Solids 356, 695 (2010).Google Scholar
Wiktorczyk, T., Mater. Sci.-Poland 27, 1179 (2009).Google Scholar
Wiktorczyk, T., Non-Cryst, J.. Solids 353, 4400 (2007).Google Scholar
Dakhel, A. A., Solid-State Electron. 49(4), 562 (2005).Google Scholar
Darmawan, P., Chia, P.S., Lee, P.S., J. Phys.: Conf. Series 61, 229 (2007).Google Scholar
Darmawan, P., Yuan, C.L., Lee, P.S., Sol. State Commun. 138, 571 (2006).Google Scholar
Zhang, H., Chen, J., Guo, H., J. Rare Earths 28, 232 (2010).Google Scholar
Ordin, S.V., Shelyhk, A.I., Semicond. 44, 558 (2010).Google Scholar
Khushwaha, V.S., Kumar, A., Optoelect, J.. Adv. Mater. 4, 1159 (2004).Google Scholar
Gulalkari, R.S., Bakale, Y.G., Burghate, D.K. and Deogaonkar, V.S., Pramana J. Phys. 69, 485 (2007).Google Scholar
Hegab, N.A., Atyia, H.E., Ovon, J.. Res. 2, 21 (2006).Google Scholar
Schottky, W., Z. Phys. 15, 872 (1914).Google Scholar
Frenkel, J., Phys. Rev. 54, 647 (1938).CrossRefGoogle Scholar
Yuan, C. L., Darmawan, P., Chan, M.Y., Lee, P.S., Europhys. Lett. 77, 67001 (2007).Google Scholar
Wasiq, M.F, Nadeem, M.Y, Mahmood, Khalid, Farooq Warsi, M., Azhar Khan, M., J. Alloys and Compounds, 648, 577 (2015).Google Scholar
Chiu, F.C, Appl, J.. Phys. 11, 5 (2006).Google Scholar
Kim, Y.S., Lee, Y.H., Sung, M.Y., Solid State Electron. 43, 1189 (1999).Google Scholar
Nataraj, D., Senthil, K., Narayandass, S. K., Mangalaraj, D., Cryst. Res. Technol. 34, 867 (1999).Google Scholar