Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-10T22:02:18.177Z Has data issue: false hasContentIssue false

Inkjet-Printing of Methylammonium Lead Trihalide Perovskite as Active Layers for Optoelectronic Devices

Published online by Cambridge University Press:  12 February 2018

Charles Trudeau*
Affiliation:
Institut National d’Optique, 2740Einstein Street, Québec, QC, Canada G1P 4S4 Department of Electrical Engineering, École de Technologie Supérieure, 1100Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3
Martin Bolduc
Affiliation:
Institut National d’Optique, 2740Einstein Street, Québec, QC, Canada G1P 4S4
Patrick Beaupré
Affiliation:
Institut National d’Optique, 2740Einstein Street, Québec, QC, Canada G1P 4S4
Jaime Benavides-Guerrero
Affiliation:
Department of Electrical Engineering, École de Technologie Supérieure, 1100Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3
Bruno Tremblay
Affiliation:
Institut National d’Optique, 2740Einstein Street, Québec, QC, Canada G1P 4S4
Sylvain G. Cloutier
Affiliation:
Department of Electrical Engineering, École de Technologie Supérieure, 1100Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3
*
Get access

Abstract

New routes in additive devices fabrication techniques and advances in printable materials are required to meet the ever increasing demands for low-cost and large-area flexible electronics. In particular, perovskite-based materials have gained an appeal due to their unique optoelectronics and ferroelectrics properties, which may replace p-n junction in semiconductor devices. Metal-organic methylammonium lead trihalide perovskite formulations have been extensively studied in the last few years as promising materials for use in printed electronics, which do not require high temperatures or vacuum environment, contrary to conventional semiconductor fabrication techniques. In this work, digital inkjet-printing in ambient atmosphere is proposed as a deposition pathway for the fabrication of perovskite active layers in photodetector and thin-film photovoltaic device architectures. The device architecture containing a printed perovskite active layer sandwiched between TiO2 and Spiro-OMeTAD as electron and hole transport layers, respectively, as well as layer-on-layer fabrication and responsivity spectra of the perovskite-based device are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

Eggenhuisen, T., Galagan, Y., Biezemans, A.F., Slaats, T.M., Voorthuijzen, W.P., Kommeren, S., Shanmugam, S., Teunissen, J.P., Hadipour, A., Verhees, W.J., Veenstra, S.C., et al. ., J. Mater. Chem. A, 3(14), 72557262 (2015).Google Scholar
Gevaerts, V., Biezemans, A., Passet, Q., Eggenhuisen, T., Willems, R., Veenstra, S., Gilot, J., Kroon, J., Andriessen, R., et al. ., 43rd Photovoltaic Specialists Conference (PVSC), (2016).Google Scholar
Kim, H., Lim, K. and Lee, T., Energy & Environmental Science, 9(1), 1230 (2016).Google Scholar
Bolduc, M., Trudeau, C., Beaupré, P., Cloutier, S.G. and Galarneau, P., Nature Scientific Reports, 8, 14181426 (2018).Google Scholar
Trudeau, C., Bolduc, M., Beaupré, P., Topart, P., Alain, C. and Cloutier, S., MRS Advances, 2(18), 10151020 (2017).Google Scholar
Xu, F., Benavides, J., Ma, X. and Cloutier, S., J. Nanotechnol., 2012, 16 (2012).Google Scholar
Barnett, J., Cherrette, V., Hutcherson, C. and So, M., Advances in Materials Science and Engineering, 2016, 112 (2016).Google Scholar
Gonzalez-Pedro, V., Juarez-Perez, E., Arsyad, W., Barea, E., Fabregat-Santiago, F., Mora-Sero, I. and Bisquert, J., Nano Lett., 14(2),888893 (2014).CrossRefGoogle Scholar
Gouda, L., Gottesman, R., Ginsburg, A., Keller, D., Haltzi, E., Hu, J., Tirosh, S., Anderson, A., Zaban, A. and Boix, P., J. Phys. Chem. Lett., 6(22), 46404645 (2015).CrossRefGoogle Scholar
Hammond, P., Microelectron. Eng., 73-74, 893897 (2004).Google Scholar
Bai, H., Shen, T. and Tian, J., J. Mater. Chem. C, 5(40), 1054310548 (2017).Google Scholar
Leijtens, T., Eperon, G., Pathak, S., Abate, A., Lee, M. and Snaith, H., Nature Communications, 4, (2013).Google Scholar
Jeong, B., Cho, S., Cho, S., Lee, J., Hwang, I., Hwang, S., Cho, J., Lee, T. and Park, C.,, phys. status solidi (RRL), 10(5), 381387 (2016).Google Scholar
Xiao, Z., Dong, Q., Bi, C., Shao, Y., Yuan, Y. and Huang, J., Advanced Materials, 26(37), 65036509 (2014).Google Scholar
Benavides-Guerrero, J., Trudeau, C., Gerlein, L. and Cloutier, S.G., submitted to Nature Communications: NCOMMS-17-33072-T (2017).Google Scholar