Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T19:05:26.364Z Has data issue: false hasContentIssue false

Influence of the metal concentration on the phytosynthesis of nanoparticles of Iron and Zinc

Published online by Cambridge University Press:  23 December 2019

José Angel Sanjurjo-García
Affiliation:
Instituto de Física - Universidad Nacional Autónoma de México, Materia Condensada, México Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, México
Pablo Samuel Schabes-Retchkiman
Affiliation:
Instituto de Física - Universidad Nacional Autónoma de México, Materia Condensada, México
Ma. Guadalupe Macedo
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, México
José Luis García-Rivas
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, México
Javier Illescas
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, México
Sonia Martínez-Gallegos*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, México
*
Get access

Abstract

In this work, green nanotechnology has been applied by using phytochemical compounds as reducing agents from the plant extract of Hydrocotyle ranunuculoides through three modifications of the phytosynthesis method to prepare Fe and Zn nanoparticles, in three different concentration of the metallic solution. In the third modification a MgO support was included to avoid the Fe and Zn NP agglomeration. The nanoparticles size was 5±1 nm, and for the Fe NPs, it was determined with a cubic structure a Fe3O4 composition, and Zn nanoparticles were obtained with a hexagonal structure and Zn° composition. In the third method, MgO nanoparticle, the support appears as Mg0 nanoparticles surrounded by Fe0 and Zn0 nanoparticles. According to the three used methods pathways, the main influence is the modification in the method synthesis. Hybrid nanocomposites provide a means in preventing agglomeration of the NPs and hence avoid coalescence and loss of properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kanchi, S. and Ahmed, S., Green Metal Nanoparticles; Synthesis, Characterization and Their Applications ., 1st ed. Scrivener Publisher, Wiley, 2018.CrossRefGoogle Scholar
Arora, N., Mehta, A., Mishra, A., and Basu, S., “4-Nitrophenol reduction catalysed by Au-Ag bimetallic nanoparticles supported on LDH: Homogeneous vs. heterogeneous catalysis,” Appl. Clay Sci., vol. 151, no. October 2017, pp. 19, 2018.CrossRefGoogle Scholar
Karimi, B., Barzegar, H., and Vali, H., “Au-Pd bimetallic nanoparticles supported on a high nitrogen-rich ordered mesoporous carbon as an efficient catalyst for room temperature Ullmann coupling of aryl chlorides in aqueous media,” Chem. Commun., vol. 54, no. 52, pp. 71557158, 2018.CrossRefGoogle ScholarPubMed
Van Vaerenbergh, B. et al., “The effect of the hydrotalcite structure and nanoparticle size on the catalytic performance of supported palladium nanoparticle catalysts in Suzuki cross-coupling,” Appl. Catal. A Gen., vol. 550, no. September 2017, pp. 236244, 2018.CrossRefGoogle Scholar
Nasrollahzadeh, M., Sajjadi, M., Komber, H., Khonakdar, H. A., and Sajadi, S. M., “In situ green synthesis of Cu-Ni bimetallic nanoparticles supported on reduced graphene oxide as an effective and recyclable catalyst for the synthesis of N-benzyl-N-aryl-5-amino-1H-tetrazoles,” Appl. Organomet. Chem., vol. 33, no. 7, pp. 114, 2019.CrossRefGoogle Scholar
Tanaka, S. et al., “Gold nanoparticles supported on mesoporous iron oxide for enhanced CO oxidation reaction,” Nanoscale, vol. 10, no. 10, pp. 47794785, 2018.CrossRefGoogle ScholarPubMed
Yan, Z., Yang, Z., Xu, Z., An, L., Xie, F., and Liu, J., “Enhanced room-temperature catalytic decomposition of formaldehyde on magnesium-aluminum hydrotalcite/boehmite supported platinum nanoparticles catalyst,” J. Colloid Interface Sci., vol. 524, pp. 306312, 2018.CrossRefGoogle ScholarPubMed
Wu, Y., Yang, Y., Zhang, Z., Wang, Z., Zhao, Y., and Sun, L., “A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism,” Adv. Powder Technol., vol. 29, no. 2, pp. 407415, 2018.CrossRefGoogle Scholar
Alshammari, H. M. et al., “Bimetallic Au:Pd nanoparticle supported on MgO for the oxidation of benzyl alcohol,” React. Kinet. Mech. Catal., pp. 112, 2019.Google Scholar
Sahu, K., kuriakose, S., Singh, J., Satpati, B., and Mohapatra, S., “Facile synthesis of ZnO nanoplates and nanoparticle aggregates for highly efficient photocatalytic degradation of organic dyes,” J. Phys. Chem. Solids, vol. 121, no. April, pp. 186195, 2018.CrossRefGoogle Scholar
Liu, X. et al., “Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide,” Chem. - A Eur. J., vol. 23, no. 49, pp. 1183411842, 2017.CrossRefGoogle ScholarPubMed