Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T19:08:43.580Z Has data issue: false hasContentIssue false

The Influence of Stoichiometry on the Index of Refraction of Cobalt Ferrite Samples at Terahertz Frequencies

Published online by Cambridge University Press:  16 May 2017

Alan F. N. Boss*
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900 Brazil
Antonio C. C. Migliano
Affiliation:
Instituto Tecnológico de Aeronáutica, São José dos Campos, SP, 12228-900 Brazil Instituto de Estudos Avançados, São José dos Campos, SP, 12228-001 Brazil
Ingrid Wilke
Affiliation:
Rensselear Polytechnic Institute, Troy, NY, 12180 USA
*
Get access

Abstract

We report an experimental study on the terahertz frequency dielectric properties of manganese cobalt ferrites (MnxCo1−xFe2O4) and nickel cobalt ferrites (NixCo1-xFe2O4) with three different stoichiometry each, x=0.3, x=0.5 and 0.7. Particularly, we present a comparison and discussion of the terahertz frequency indices of refraction of these two ferrites compositions. MnxCo1−xFe2O4 and NixCo1-xFe2O4 pellets with different Mn/Co and Ni/Co ratios (x=0.3, x=0.5 and x=0.7) were prepared by state-of-the-art ceramic processing. The morphology and chemical homogeneity of these ferrites were characterized by energy dispersive x-ray spectroscopy. We observed that the indexes of refraction for manganese cobalt ferrites are 3.22, 3.71 and 3.67 for ratios of 0.3, 0.5 and 0.7, respectively. In the case of nickel cobalt ferrite, the indexes of refraction are 3.53, 3.57 and 3.47 for ratios of 0.3, 0.5 and 0.7 respectively. We notice a substantial difference in the index of refraction for the Mn0.3Co0.7Fe2O4. This difference may be correlated to a secondary phase formed in this sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Spaldin, N.A., Magnetic Materials – Fundamentals and Applications, 2nd ed. (Cambridge University Press, New York, 2011) p. 113.Google Scholar
Callister, W.D. Jr., Materials Science and Engineering: An Introduction, 7th ed. (John Wiley & Sons, Inc., New York, 2007) p. 85.Google Scholar
Vendik, I.B., Vendik, O.G., Odit, M.A., Kholodnyak, D.V., Zubko, S.P., Sitnikova, M.F., Turalchuk, P.A., Zemlyakov, K.N., Munina, I.V., Kozlov, D.S., Turgaliev, V.M., Ustinov, A.B., Park, Y., Kihm, J. and Lee, C.-W., IEEE Trans. THz Sci. Technol. 2, 538549 (2012).CrossRefGoogle Scholar
Boss, A.F.N., Migliano, A.C.C. and Wilke, I., 41st International Conference on Infrared, Millimeter, and Terahertz waves (2016).Google Scholar
Boss, A.F.N., Wilke, I. and Migliano, A.C.C., Latin America Optics and Photonics Conference, LW2B.5 (2016).Google Scholar
Fan, F., Chang, S.-J., Niu, C., Hou, Y. and Wang, X.-H., Opt. Commun. 285, 3763 (2012).Google Scholar
Qing-Hui, Y., Huai-Wu, Z., Ying-Li, L., Qi-Ye, W. and Jie, Z., Chin. Phys. Lett. 25, 3957 (2008).CrossRefGoogle Scholar
Kang, L., Zhao, Q., Zhao, H. and Zhou, J., Opt. Express 16, 8825 (2008).Google Scholar
Takano, K., Yakiyama, Y., Shibuya, K., Izumi, K., Miyazaki, H., Jimba, Y., Miyamaru, F., Kitahara, H. and Hangyo, M., IEEE Trans. THz Sci. Technol. 3, 812 (2013).Google Scholar
Brito, V.L.O., Migliano, A.C.C., Lemos, L.V. and Melo, F.C.L., Prog. Electromagn. Res. 1, 303 (2009).Google Scholar
Lee, Y.-S., Principles of terahertz science and technology (Springer, New York, 2009) p. 59.Google Scholar