Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T23:30:33.916Z Has data issue: false hasContentIssue false

Influence of Spin-Orbit Coupling on Electronic Structure of Polyyne and Cumulene Carbynes

Published online by Cambridge University Press:  24 February 2016

Sergey Karabanov*
Affiliation:
Ryazan State Radio Engineering University 59/1 Gagarina St., Ryazan 390005, Russia
Pavel Dyachkov
Affiliation:
Ryazan State Radio Engineering University 59/1 Gagarina St., Ryazan 390005, Russia
Dmitry Suvorov
Affiliation:
Ryazan State Radio Engineering University 59/1 Gagarina St., Ryazan 390005, Russia
Gennady Gololobov
Affiliation:
Ryazan State Radio Engineering University 59/1 Gagarina St., Ryazan 390005, Russia
Dmitry Tarabrin
Affiliation:
Ryazan State Radio Engineering University 59/1 Gagarina St., Ryazan 390005, Russia
Evgeny Slivkin
Affiliation:
Ryazan State Radio Engineering University 59/1 Gagarina St., Ryazan 390005, Russia
*
Get access

Abstract

The present paper has suggested a new non-observational method to calculate electronic structure of carbynes taking into consideration the influence of the spin-orbital coupling. The method is demonstrated by calculations of the structure splitting at the Fermi level in cumulene and polyyne carbynes having semiconductor and metallic electronic structure correspondingly. These couplings result in 2 - 3 meV gaps.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dyachkov, P.N., Electronic structure and application of nanotubes. М.: Publishing house «Binom», 2011, 443 pagesGoogle Scholar
Minot, E. D., Yaish, Y., Sazonova, V. and McEuen, P. L., Nature 428, 2004, pp. 536539CrossRefGoogle Scholar
Ando, T.J., Phys. Soc. Jpn., 200, 69, 1757Google Scholar
Chico, L., Lopez-Sancho, M.P. and Munoz, M.C., Phys. Rev., 2004, 176402, Lett. 93Google Scholar
Izumida, W., Sato, K. and Saito, R.J., Phys. Soc., Japan, 2009, V. 78, No. 7, 074707CrossRefGoogle Scholar
Huertas-Hernando, D., Guinea, F. and Brataas, A., Phys. Rev., B 74, 2006, 155426CrossRefGoogle Scholar
Kuemmeth, F., Ilani, S., Ralph, D.C. and McEuen, P.L., Nature 452, 2008, V. 448Google Scholar
Jespersen, T.S., Grove-Rasmussen, K., Paaske, J., Muraki, K., Fujisawa, T., Nygård, J. and Flensberg, K., Nature Physics, 2011, V.348, No. 7Google Scholar
Dyachkov, P.N., Kepp, О.М., Nikolaev, А.V., DAN 1999, V. 365, No. 2, pp. 215220Google Scholar
Dyachkov, P.N., Kirin, D.V., DAN 1999, V. 369, No. 5, pp. 639646Google Scholar
Dyachkov, P.N. and Makaev, D.V., Phys. Rev. B., 2007, V. 76, 195411CrossRefGoogle Scholar
Dyachkov, P.N., Kutlubaev, D.Z. and Makaev, D.V., Phys. Rev. B. 2010, V. 82, 035426CrossRefGoogle Scholar
Slater, J.C., Phys. Rev. 1937, No. 10, pp. 846851CrossRefGoogle Scholar
Andersen, O.K., Phys. Rev. B. 1975, T. 12, No. 8, pp. 864871CrossRefGoogle Scholar
Koelling, D.D. and Arbman, G.O., J. Phys. F: Metal Physics, 1975, No. 5, p. 2041.16CrossRefGoogle Scholar
Nemoshkalenko, V.V., Antonov, V.N., Methods of computational physics in the solid-state theory, Band theory of metals, Kiev, Naukova Dumka, 1985. 87 pagesGoogle Scholar
Conclin, J.B. Jr., Johnson, L.E. and Pratt, G.W. Jr.Phys. Rev. 1965, T. 137, No. 4A, pp. 12821294.CrossRefGoogle Scholar
Davydov, A.S., Quantum mechanics, M: Science, 1973, 121 pages.Google Scholar
Shiff, L.I., Quantum mechanics, M.: IL, 1959, 480 pages.Google Scholar