Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-22T18:22:44.590Z Has data issue: false hasContentIssue false

In vitro Degradation Analysis of 3D-architectured Gelatin-based Hydrogels

Published online by Cambridge University Press:  28 November 2019

Jun Hon Pang
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
Christian Wischke
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany Institute of Chemistry, University of Potsdam, Potsdam, Germany
*
*Correspondence to: Andreas Lendlein E-mail: [email protected]
Get access

Abstract:

Multifunctional biopolymer-based materials are promising candidates for next generation regenerative biomaterials. Understanding the degradation behavior of biomaterials is vital for ensuring biological safety, as well as for better control of degradation properties based on rational design of a material’s physical and chemical characteristics. In this study, we decipher the degradation of a hydrogel prepared from gelatin and lysine diisocyanate ethyl ester (LDI) using in vitro models, which simulate hydrolytic, oxidative and enzymatic degradation (collagenase). Gravimetrical, morphological, mechanical and chemical properties were evaluated. Notably, the hydrogels were relatively resistant to hydrolytic degradation, but degraded rapidly within 21 days (>95% mass loss) under oxidative and collagenase degradation. Oxidative and collagenase degradation rapidly decreased the storage and loss modulus of the hydrogels, and slightly increased their viscous component (tan δ). For each degradation condition, the results suggest different possible degradation pathways associated to the gelatin polypeptide backbone, urea linkages and ester groups. The primary degradation mechanisms for the investigated gelatin based hydrogels are oxidative and enzymatic in nature. The relative hydrolytic stability of the hydrogels should ensure minimal degradation during storage and handling prior to application in surgical theatres.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mao, A. S. and Mooney, D. J., Proc Natl Acad Sci U S A 112 (47), 14452-14459 (2015).CrossRefGoogle Scholar
Sadtler, K., Singh, A., Wolf, M. T., Wang, X., Pardoll, D. M. and Elisseeff, J. H., Nat Rev Mat 1 (7), 16040 (2016).CrossRefGoogle Scholar
Williams, D. F., Front Bioeng Biotechnol 7, 127 (2019).CrossRefGoogle Scholar
Bao, Z., Xian, C., Yuan, Q., Liu, G. and Wu, J., Adv Healthc Mater 8, 1900670 (2019).CrossRefGoogle Scholar
Su, K. and Wang, C., Biotechnol Lett 37 (11), 2139-2145 (2015).CrossRefGoogle Scholar
Neffe, A. T., Pierce, B. F., Tronci, G., Ma, N., Pittermann, E., Gebauer, T., Frank, O., Schossig, M., Xu, X., Willie, B. M., Forner, M., Ellinghaus, A., Lienau, J., Duda, G. N. and Lendlein, A., Adv Mater 27 (10), 1738-1744 (2015).CrossRefGoogle Scholar
Zhang, J.-Y., Beckman, E. J., Hu, J., Yang, G.-G., Agarwal, S. and Hollinger, J. O., Tiss Eng 8 (5), 771-785 (2002).CrossRefGoogle Scholar
Tondera, C., Hauser, S., Kruger-Genge, A., Jung, F., Neffe, A. T., Lendlein, A., Klopfleisch, R., Steinbach, J., Neuber, C. and Pietzsch, J., Theranostics 6 (12), 2114-2128 (2016).CrossRefGoogle Scholar
Weems, A. C., Wacker, K. T., Carrow, J. K., Boyle, A. J. and Maitland, D. J., Acta Biomater 59, 33-44 (2017).CrossRefGoogle Scholar
Schubert, M. A., Wiggins, M. J., Anderson, J. M. and Hiltner, A., J Biomed Mater Res 34 (4), 519-530 (1997).3.0.CO;2-7>CrossRefGoogle Scholar
Martin, J. R., Gupta, M. K., Page, J. M., Yu, F., Davidson, J. M., Guelcher, S. A. and Duvall, C. L., Biomaterials 35 (12), 3766-3776 (2014).CrossRefGoogle Scholar
Brugmans, M. C. P., Sntjens, S. H. M., Cox, M. A. J., Nandakumar, A., Bosman, A. W., Mes, T., Janssen, H. M., Bouten, C. V. C., Baaijens, F. P. T. and Driessen-Mol, A., Acta Biomater 27, 21-31 (2015).CrossRefGoogle Scholar
Schubert, M. A., Wiggins, M. J., Schaefer, M. P., Hiltner, A. and Anderson, J. M., J Biomed Mater Res 29 (3), 337-347 (1995).CrossRefGoogle Scholar
Dempsey, D. K., Carranza, C., Chawla, C. P., Gray, P., Eoh, J. H., Cereceres, S. and Cosgriff-Hernandez, E. M., J Biomed Mater Res A 102 (10), 3649-3665 (2014).CrossRefGoogle Scholar
Lee, Y., Bae, J. W., Lee, J. W., Suh, W. and Park, K. D., J. Mater. Chem. B 2 (44), 7712-7718 (2014).CrossRefGoogle Scholar
ISO 10993-13:2010 Biological evaluation of medical devices — Part 13: Identification and quantification of degradation products from polymeric medical devices.Google Scholar
Wang, H. M., Chou, Y. T., Wen, Z. H., Wang, C. Z., Chen, C. H. and Ho, M. L., PLoS One 8 (6), e56330 (2013).CrossRefGoogle Scholar
Kishan, A. P., Nezarati, R. M., Radzicki, C. M., Renfro, A. L., Robinson, J. L., Whitely, M. E. and Cosgriff-Hernandez, E. M., J Mater Chem B 3 (40), 7930-7938 (2015).CrossRefGoogle Scholar
Tronci, G., Neffe, A. T., Pierce, B. F. and Lendlein, A., J Mater Chem 20 (40), 8875-8884 (2010).CrossRefGoogle Scholar
Zustiak, S. P. and Leach, J. B., Biomacromolecules 11 (5), 1348-1357 (2010).CrossRefGoogle Scholar
Delebecq, E., Pascault, J. P., Boutevin, B. and Ganachaud, F., Chem Rev 113 (1), 80-118 (2013).CrossRefGoogle Scholar
Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts, 3rd ed. (John Wiley & Sons, 2001).Google Scholar
Kallies, B. and Mitzner, R., J Mol Model 4 (6), 183-196 (1998).CrossRefGoogle Scholar
Hafeman, A. E., Zienkiewicz, K. J., Zachman, A. L., Sung, H. J., Nanney, L. B., Davidson, J. M. and Guelcher, S. A., Biomaterials 32 (2), 419-429 (2011).CrossRefGoogle Scholar
Stadtman, E. R., Ann Rev Biochem 62 (1), 797-821 (1993).CrossRefGoogle Scholar
Yang, G., Xiao, Z., Long, H., Ma, K., Zhang, J., Ren, X. and Zhang, J., Sci Rep 8 (1), 1616 (2018).CrossRefGoogle Scholar
Sears, N. A., Pena-Galea, G., Cereceres, S. N. and Cosgriff-Hernandez, E., J Tissue Eng 7, 1-9 (2016).CrossRefGoogle Scholar
Fu, H. L., Hong, Y., Little, S. R. and Wagner, W. R., Biomacromolecules 15 (8), 2924-2932 (2014).CrossRefGoogle Scholar