Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T17:21:55.778Z Has data issue: false hasContentIssue false

High-Resolution Electrohydrodynamic Printing of Silver Reactive Inks

Published online by Cambridge University Press:  28 June 2016

Christopher Lefky*
Affiliation:
Arizona State University, Tempe, AZ 85281, U.S.A.
Galen Arnold
Affiliation:
Arizona State University, Tempe, AZ 85281, U.S.A.
Owen Hildreth
Affiliation:
Arizona State University, Tempe, AZ 85281, U.S.A.
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nano-inkjet printing using an Electrohydrodynamic's (EHD) pulsed cone-jet approach has the potential to bring affordable additive manufacturing to the micro and nanoscale. Ink technology is a major limitation of current EHD techniques. Specifically, most EHD printing processes print either nanoparticles or polymers. The materials are structurally weak and often have poor electrical or mechanical properties. For example, printing nanoparticles effectively creates a cluster of nanoparticles that must be sintered to create a continuous material. To address these issues, we have been adapting reactive inks to work with an EHD pulsed cone-jet. Specifically, we demonstrate that silver micron-scale structures can be printed using an EHD pulsed cone-jet regime. These inks produce solid structures without sintering steps and with good electrical properties.1,2 This work shows that reactive ink chemistries can be combined with EHD printing to produce fine-resolution features consisting of solid metal without an annealing step.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

REFERENCES

Walker, S.B. and Lewis, J.A., J. Am. Chem. Soc. 134, 1419 (2012).Google Scholar
Lefky, C.; Mamidanna, A.; Huang, Y.; Hildreth, O. Impact of Solvent Selection and Temperature on Porosity and Resistance of Printed Self-Reducing Silver Inks. Physica Status Solidi (a) 2016.Google Scholar
Schneider, J., Rohner, P., Thureja, D., Schmid, M., Galliker, P., and Poulikakos, D., Adv. Funct. Mater. 26, 805 (2016).Google Scholar
An, B.W., Kim, K., Lee, H., Kim, S.-Y., Shim, Y., Lee, D.Y., Song, J.Y., and Park, J.-U., Adv. Mater. 27, 4322 (2015).Google Scholar
Kim, K., Kim, G., Lee, B.R., Ji, S., Kim, S.-Y., An, B.W., Song, M.H., and Park, J.-U., Nanoscale 7, 13410 (2015).Google Scholar
Kim, B.H., Onses, M.S., Bin Lim, J., Nam, S., Oh, N., Kim, H., Yu, K.J., Lee, J.W., Kim, J.-H., Kang, S.- K., Lee, C.H., Lee, J., Shin, J.H., Kim, N.H., Leal, C., Shim, M., and Rogers, J.A., Nano … (2015).Google ScholarPubMed
Sutanto, E., Tan, Y., Onses, M.S., Cunningham, B.T., and Alleyne, A., Manufacturing Letters 2, 4 (2014).CrossRefGoogle Scholar
Galliker, P., Schneider, J., Eghlidi, H., Kress, S., Sandoghdar, V., and Poulikakos, D., Nature Communications 3, 890 (2012).CrossRefGoogle Scholar
Galliker, P., Schneider, J., and Poulikakos, D., Appl. Phys. Lett. 104, 073105 (2014).Google Scholar
Lee, M.W., An, S., Kim, N.Y., Seo, J.H., Huh, J.Y., and Kim, H.Y., … Thermal and Fluid … (2013).Google Scholar
Kim, J., Oh, H., and Kim, S.S., Journal of Aerosol Science 39, 819 (2008).Google Scholar
Wang, Y., Tan, M.K., Go, D.B., and Chang, H.-C., Epl 99, 64003 (2012).Google Scholar