Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:37:05.579Z Has data issue: false hasContentIssue false

High-Rate Performance of LiCoO2 Epitaxial Thin Films with Various Surface Conditions

Published online by Cambridge University Press:  04 March 2018

Sou Yasuhara
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
Shintaro Yasui*
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
Tomoyasu Taniyama
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
Mitsuru Itoh
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Japan
*
Get access

Abstract

Lithium ion batteries with high-rate performance have been demanded since electric and hybrid vehicles are released. It is known that high interfacial resistance between electrode and electrolyte prevents intercalation of lithium ions. We investigated high-rate capability of typical LiCoO2 cathode with various surface morphologies using epitaxial thin films prepared by pulsed laser deposition. As a result, high-rate performance in (104)LiCoO2 thin films was enhanced by an increase of (110)LiCoO2 facet density because diffusion coefficient of (110)LiCoO2 was larger than that of (104)LiCoO2. Therefore, a control of crystal plane at the surface is a key point for high-rate performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tarascon, J.-M. and Armand, M., Nature 414, 359 (2001).CrossRefGoogle Scholar
Edström, K., Gustafsson, T., and Thomas, J.O., Electrochem. Acta 50, 397 (2004).CrossRefGoogle Scholar
Teranishi, T., Yoshikawa, Y., Sakuma, R., Hashimoto, H., Hayashi, H., Kishimoto, A., and Fujii, T., Appl. Phys. Lett. 105, 143904 (2014).CrossRefGoogle Scholar
Scott, I. D., Jung, Y. S., Cavanagh, A. S., Yan, Y., Dillon, A. C., George, S. M., and Lee, S.-H., Nano Lett. 11, 414 (2011).CrossRefGoogle Scholar
Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., Zhou, H., and Honma, I., J. Am. Chem. Soc. 129, 7444 (2007).CrossRefGoogle Scholar
Hirayama, M., Sonoyama, N., Abe, T., Minoura, M., Ito, M., Mori, D., Yamada, A., Kanno, R., Terashima, T., Takano, M., Tamura, K., and Mizuki, K., J. Power Sources 168, 493 (2007).CrossRefGoogle Scholar
Takeuchi, S., Tan, H., Kamala, B. K., Stafford, G. R., Shin, J., Yasui, S., Takeuchi, I., and Bendersky, L. A., ACS Appl. Mater. Interfaces 7, 7901 (2015).CrossRefGoogle Scholar
Li, Z., Yasui, S., Takeuchi, S., Creuziger, A., Maruyama, S., Herzing, A.A., Takeuchi, I., and Bendersky, L.A., Thin Solid Films 612, 472 (2016).CrossRefGoogle Scholar
Tsuruhama, T., Hitosugi, T., Oki, H., Hirose, Y., and Hasegawa, T., Appl. Phys. Exp. 2, 085502 (2009).CrossRefGoogle Scholar
Ohnishi, T. and Takada, K., Appl. Phys. Exp. 5, 055502 (2012).CrossRefGoogle Scholar
Cunningham, B., Chu, J. O., and Akbar, S., Appl. Phys. Lett. 59, 30 (1991).Google Scholar
Schünemann, C., Elschner, C., Levin, A.A., Levichkova, M., Leo, K., and Riede, M., Thin Solid Films 519, 3939 (2011).CrossRefGoogle Scholar
Chen, Z. and Dahn, J.R., Electrochem, Solid-State Lett. 7, A11 (2004).Google Scholar
Cho, J., Kim, T.-J., and Park, B., J. Electrochem. Soc. 149, A288 (2002).Google Scholar