Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:34:31.190Z Has data issue: false hasContentIssue false

Highly Sensitive and Fast Detection of C-Reactive Protein and Troponin Biomarkers Using Liquid-gated Single Silicon Nanowire Biosensors

Published online by Cambridge University Press:  27 January 2020

Yurii Kutovyi
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
Jie Li
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
Ihor Zadorozhnyi
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
Hanna Hlukhova
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
Nazarii Boichuk
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
Dmytro Yehorov
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
Marcus Menger
Affiliation:
Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), 14476 Potsdam, Germany
Svetlana Vitusevich*
Affiliation:
Bioelectronics (ICS-8), Forschungszentrum Jülich, 52425 Jülich, Germany
*
Get access

Abstract

C-reactive protein (CRP) and cardiac troponin I (cTnI) biomolecules represent the earliest enzymes that appear in the blood when a cardiac injury occurs. Real-time and selective detection of these biomarkers is essential for the prediction and detection of cardiovascular diseases at an early stage. Here we report on the label-free specific detection of both proteins at picomolar concentrations using fabricated nanowire-based biosensors. We demonstrate a novel functionalization technique based on the attachment of dibenzocyclooctyne (DBCO)-linked troponin-specific aptamers to azide-functionalized silicon (Si) nanowire (NW) surface. Due to the fast and reliable immobilization of cTnI-specific aptamers and CRP-specific antibodies on the Si NWs, the fabricated devices can rapidly detect target biomolecules demonstrating high sensitivity. We confirm the attachment of proteins to the surface of Si NWs by atomic force microscopy (AFM). Moreover, we demonstrate that nanowire structures of different sizes enable the detection of biomarkers in a wide concentration range (from 1 pg/ml to 1 µg/ml), corresponding to CRP and cTnI elevation levels during the early stage of disease formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

λ

These authors contributed equally to the work.

References

La Thangue, N. B. and Kerr, D. J., Nat. Rev. Clin. Oncol. 8, 587 (2011).CrossRefGoogle Scholar
Zetterberg, H. and Schott, J., Nat. Med. 25, 201 (2019).CrossRefGoogle Scholar
Qureshi, A., Gurbuz, Y., and Niazi, J. H., Sensors Actuators, B Chem. 171–172, 62 (2012).CrossRefGoogle Scholar
Ridker, P. M., Circulation 107, 363 (2003).CrossRefGoogle Scholar
Chandra, P., Suman, P., Airon, H., Mukherjee, M., and Pranjal, P. K., World J. Methodol. 4, 1 (2014).CrossRefGoogle Scholar
Larue, C., Calzolari, C., Bertinchant, J. P., Leclercq, F., Grolleau, R., and Pau, B., Clin. Chem. 39, 972 (1993).CrossRefGoogle Scholar
Sarangadharan, I., Regmi, A., Chen, Y., Hsu, C., Chen, P., Chang, H., Lee, G., Chyi, J., Shiesh, S., Lee, G., and Wang, L., Biosens. Bioelectron. 100, 282 (2018).CrossRefGoogle Scholar
Bhalla, V., Carrara, S., Sharma, P., Nangia, Y., and Raman Suri, C., Sensors Actuators, B Chem. 161, 761 (2012).CrossRefGoogle Scholar
Choi, H. W., Sakata, Y., Kurihara, Y., Ooya, T., and Takeuchi, T., Anal. Chim. Acta 728, 64 (2012).CrossRefGoogle Scholar
Kutovyi, Y., Zadorozhnyi, I., Hlukhova, H., Handziuk, V., Petrychuk, M., Ivanchuk, A., and Vitusevich, S., Nanotechnology 29, (2018).CrossRefGoogle Scholar
Zhou, Y., Li, C., Li, X., Zhu, X., Ye, B., and Xu, M., Anal. Methods 10, 4430 (2018).CrossRefGoogle Scholar
Patolsky, F., Zheng, G., and Lieber, C. M., Nat. Protoc. 1, 1711 (2006).CrossRefGoogle Scholar
Clément, N., Nishiguchi, K., Dufreche, J. F., Guerin, D., Fujiwara, A., and Vuillaume, D., Appl. Phys. Lett. 98, 96 (2011).CrossRefGoogle Scholar
Kutovyi, Y., Zadorozhnyi, I., Handziuk, V., Hlukhova, H., Boichuk, N., Petrychuk, M., and Vitusevich, S., Nano Lett. 18, 7305 (2018).CrossRefGoogle Scholar
Pud, S., Li, J., Sibiliev, V., Petrychuk, M., Kovalenko, V., Offenhäusser, A., and Vitusevich, S., Nano Lett. 14, 578 (2014).CrossRefGoogle Scholar
Kuzmin, A., Poloukhtine, A., Wolfert, M. A., and Popik, V. V., Bioconjug. Chem. 21, 2076 (2010).CrossRefGoogle Scholar
Eeftens, J. M., van der Torre, J., Burnham, D. R., and Dekker, C., BMC Biophys. 8, 1 (2015).CrossRefGoogle Scholar
Rajan, N. K., Routenberg, D. A., Chen, J., and Reed, M. A., IEEE Electron Device Lett. 31, 615 (2010).CrossRefGoogle Scholar
Vitusevich, S. and Zadorozhnyi, I., Semicond. Sci. Technol. 32, (2017).CrossRefGoogle Scholar
Zadorozhnyi, I., Li, J., Pud, S., Hlukhova, H., Handziuk, V., Kutovyi, Y., Petrychuk, M., and Vitusevich, S., Small 14, 8 (2018).CrossRefGoogle Scholar
Sivakumarasamy, R., Nishiguchi, K., Fujiwara, A., Vuillaume, D., and Clément, N., Anal. Methods 6, 97 (2014).CrossRefGoogle Scholar
Chen, S., Bomer, J. G., Van der Wiel, W. G., Carlen, E. T., and Van Den Berg, A., ACS Nano 3, 3485 (2009).CrossRefGoogle Scholar
Tarasov, A., Wipf, M., Bedner, K., Kurz, J., Fu, W., Guzenko, V. A., Knopfmacher, O., Stoop, R. L., Calame, M., and Schönenberger, C., Langmuir 28, 9899 (2012).CrossRefGoogle Scholar
Bedner, K., Guzenko, V. A., Tarasov, A., Wipf, M., Stoop, R. L., Rigante, S., Brunner, J., Fu, W., David, C., Calame, M., Gobrecht, J., and Schönenberger, C., Sensors Actuators B. Chem. 191, 270 (2014).CrossRefGoogle Scholar
Bedner, K., Guzenko, V. A., Tarasov, A., Wipf, M., Stoop, R. L., Just, D., Rigante, S., Fu, W., Minamisawa, R. A., David, C., Caiame, M., Gobrecht, J., and Schonenberger, C., Sensors Mater. 25, 567 (2013).Google Scholar
Shalev, G., Landman, G., Amit, I., Rosenwaks, Y., and Levy, I., NPG Asia Mater. 5, 1 (2013).CrossRefGoogle Scholar
Kim, K., Park, C., Kwon, D., Kim, D., Meyyappan, M., Jeon, S., and Lee, J.-S., Biosens. Bioelectron. 77, 695 (2016).CrossRefGoogle Scholar
Periyakaruppan, A., Gandhiraman, R. P., Meyyappan, M., and Koehne, J. E., Anal. Chem. 85, 3858 (2013).CrossRefGoogle Scholar
Tsujimoto, M., Inoue, K., and Nojima, S., Biochem 94, 1367 (1983).Google Scholar
Li, J., Pud, S., Petrychuk, M., Offenhaeusser, A., and Vitusevich, S., Nano Lett. 14, 3504 (2014).CrossRefGoogle Scholar
Gasparyan, F., Zadorozhnyi, I., and Vitusevich, S., J. Appl. Phys. 117, (2015).CrossRefGoogle Scholar