Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T17:05:42.450Z Has data issue: false hasContentIssue false

H2S-free Metal-Organic Vapor Phase Epitaxy of Coalesced 2D WS2 Layers on Sapphire

Published online by Cambridge University Press:  03 January 2019

A. Grundmann
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
D. Andrzejewski
Affiliation:
Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, Bismarckstr. 81, 47057Duisburg, Germany
T. Kümmell
Affiliation:
Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, Bismarckstr. 81, 47057Duisburg, Germany
G. Bacher
Affiliation:
Werkstoffe der Elektrotechnik and CENIDE, University Duisburg-Essen, Bismarckstr. 81, 47057Duisburg, Germany
M. Heuken
Affiliation:
AIXTRON SE, Dornkaulstr. 2, 52134Herzogenrath, Germany
H. Kalisch*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
A. Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
*
Get access

Abstract

The 2D transition metal dichalcogenide (TMDC) tungsten disulfide (WS2) has attracted great interest due to its unique properties and prospects for future (opto)electronics. However, compared to molybdenum disulfide (MoS2), the development of a reproducible and scalable deposition process for 2D WS2 has not advanced very far yet. Here, we report on the systematic investigation of 2D WS2 growth on hydrogen (H2)-desorbed sapphire (0001) substrates using a hydrogen sulfide (H2S)-free metal-organic vapor phase epitaxy (MOVPE) process in a commercial AIXTRON planetary hot-wall reactor in 10 × 2" configuration. Tungsten hexacarbonyl (WCO, 99.9 %) and di-tert-butyl sulfide (DTBS, 99.9999 %) were used as MO sources, nitrogen (N2) was selected as carrier gas for the deposition processes (standard growth time 10 h). In an initial study, the impact of growth temperature on nucleation and growth was investigated and an optimal value of 820 °C was found. The influence of the WCO flow on lateral growth was investigated. The aim was to maximize the edge length of triangular crystals as well as the total surface coverage. Extending gradually the growth time up to 20 h at optimized WCO flow conditions yields fully coalesced WS2 samples without parasitic carbon-related Raman peaks and with only sparse bilayer nucleation. After substrate removal, a fully coalesced WS2 film was implemented into a light-emitting device showing intense red electroluminescence (EL).

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Chhowalla, M., Shin, H. S., Eda, G., Li, L. J., Loh, K. P., Zhang, H., Nat. Chem. 5(4), 263 (2013).10.1038/nchem.1589CrossRefGoogle Scholar
Hanbicki, A. T., Currie, M, Kioseoglou, G, Friedman, A. L., Jonker, B. T., Solid State Commun. 203, 16-20 (2015).CrossRefGoogle Scholar
Li, Z., Xiao, Y., Gong, Y., Wang, Z., Kang, Y., Zu, S., Ajayan, P. M., Nordlander, P., Fang, Z., ACS Nano 9(10), 10158-10164 (2015).10.1021/acsnano.5b03764CrossRefGoogle Scholar
Kang, K., Xie, S., Huang, L., Han, Y., Huang, P. Y., Mak, K. F., Kim, C.-J., Muller, D., Park, J., Nature 520, 656660 (2015).10.1038/nature14417CrossRefGoogle Scholar
Kim, T., Mun, J., Park, H., Joung, D., Diware, M., Won, C., Park, J., Jeong, S.-H., Kang, S.-W., Nanotechnology 28, 18 (2017).Google Scholar
Eichfeld, S. M., Colon, V. O., Nie, Y., Cho, K., Robinson, J. A., 2D Mater. 3(2), 025015 (2016).CrossRefGoogle Scholar
Cwik, S., Mitoraj, D., Mendoza Reyes, O., Rogalla, D., Peeters, D., Kim, J., Schütz, H. M., Bock, C., Beranek, R., Devi, A., Adv. Mater. Interfaces, 1800140 (2018).CrossRefGoogle Scholar
Zhang, K., Bersch, B. M., Zhang, F., Briggs, N., Subramanian, S., Xu, K., Chubarov, M., Wang, K., Lerach, J. O., Redwing, J. M., Fullerton-Shirey, S.K., Terrones, M., and Robinson, J. A., ACS Appl. Mater. Interfaces (2018).Google ScholarPubMed
Lin, Y.-C., Jariwala, B., Bersch, B. M., Xu, K., Nie, Y., Wang, B., Eichfeld, S. M., Zhang, X., Choudhury, T. H., Pan, Y., Addou, R., Smyth, C. M., Li, J., Zhang, K., Haque, M. A., Fölsch, S., Feenstra, R. M., Wallace, R. M., Cho, K., Fullerton-Shirey, S. K., Redwing, J. M., and Robinson, J. A., ACS Nano 12(2), 965-975 (2018).10.1021/acsnano.7b07059CrossRefGoogle Scholar
Zhang, X., Choudhury, T. H., Chubarov, M., Xiang, Y., Jariwala, B., Zhang, F., Alem, N., Wang, G.-C., Robinson, J. A., and Redwing, J. A., Nano Lett ., 18 (2), 10491056 (2018).10.1021/acs.nanolett.7b04521CrossRefGoogle Scholar
Dumcenco, D., Ovchinnikov, D., Marinov, K., Lazić, P., Gibertini, M., Marzari, N., Lopez Sanchez, O., Cheng, Y.-C., Krasnozhon, D., Chen, M.-W., Bertolazzi, S., Gillet, P., Fontcuberta I Morral, A., Radenovic, A., Kis, A., ACS Nano 9(4), 4611-4620 (2015).10.1021/acsnano.5b01281CrossRefGoogle Scholar
O’Brien, P., Malik, M. A., Chuggaze, M., Trindale, T., Walsh, J.R, and Jones, A. C., J. Cryst. Growth, 170, 23-29 (1997).10.1016/S0022-0248(96)00657-4CrossRefGoogle Scholar
Malik, M. A., Afzaal, M., and O’Brien, P., Chem. Rev., 110(7), 4417 (2010).CrossRefGoogle Scholar
Marx, M., Grundmann, A., Lin, Y.-R., Andrzejewski, D., Kümmell, T., Bacher, G., Heuken, M., Kalisch, H., and Vescan, A., J. Electron. Mater. 47(2), 910-916 (2018).10.1007/s11664-017-5937-3CrossRefGoogle Scholar
Ohring, M., Materials Science of Thin Films: Deposition and Structure, 2nd ed. (San Diego: Academic, 2002), pp. 380-386.Google Scholar
Ferrari, A. C., Basko, D., Nat. Nanotechnol. 8, 235-246 (2013).CrossRefGoogle Scholar
Varshni, Y. P., J. Cryst. Growth, 34(1), 149-154 (1967).Google Scholar
Yan, T., Qiao, X., Liu, X., Tan, P., and Zhang, X., Appl. Phys. Lett., 105, 101901 (2014).10.1063/1.4895471CrossRefGoogle Scholar
Buscema, M., Steele, G. A., van der Zant, H. S. J., and Castellanos-Gomez, A., Nano. Res., 7(4), 561-571 (2014).10.1007/s12274-014-0424-0CrossRefGoogle Scholar
Kobayashi, Y., Sasaki, S., Mori, S., Hibino, H., Liu, Z., Watanabe, K., Taniguchi, T., Suenaga, K., Maniwa, Y., and Miyata, Y., ACS Nano, 9(4), 4056-4063 (2015).10.1021/acsnano.5b00103CrossRefGoogle Scholar