Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T21:00:12.516Z Has data issue: false hasContentIssue false

Growth of Monolayer WS2 Single Crystals with Atmospheric Pressure CVD: Role of Temperature

Published online by Cambridge University Press:  19 February 2019

Yong Xie*
Affiliation:
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an710071, China State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, 710072, China Case Western Reserve University, Cleveland, OH44106, USA
Guanfei Wang
Affiliation:
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an710071, China
Zhan Wang
Affiliation:
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an710071, China
Tang Nan
Affiliation:
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an710071, China
Haolin Wang
Affiliation:
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an710071, China
Yabin Wang
Affiliation:
Chair for Applied Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91058Erlangen, Germany
Yongjie Zhan
Affiliation:
Institute of Photonics and Photon Technology, Northwest University, Xi’an710069, China
Wanqi Jie
Affiliation:
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an, 710072, China
Xiaohua Ma
Affiliation:
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an710071, China
*
Get access

Abtract

It has been demonstrated that the introduction of NaCl can significantly improve the quality of monolayer WS2 at the growth temperatures ranging from 700°C to 850°C by atmospheric pressure chemical vapor deposition (APCVD) without the assistant of hydrogen. Here, the influence of NaCl on the nucleation and growth of WS2 has been thoroughly investigated. The morphology and quality of WS2 grown with different temperatures are discussed by optical microscope, Raman and Photoluminescence (PL) spectra. It was found that amount of NaCl can efficiently influence the morphology and quality of WS2 crystals. PL intensity of WS2 crystal increases around three times from the center region to the edge of an individual domain, which may be attributed to the appearance of small triangle hollows formed during the growth at the edge of single crystal WS2.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Liu, Y., Weiss, N.O., Duan, X., Cheng, H.-C., Huang, Y. and Duan, X., Nature Reviews Materials 1, 16042 (2016).CrossRefGoogle Scholar
Zhao, M., Ye, Y., Han, Y., Xia, Y., Zhu, H., Wang, S., Wang, Y., Muller, D.A. and Zhang, X., Nature Nanotechnology 13 (8), 3546-3552 (2015).Google Scholar
Desai, S.B., Madhvapathy, S.R., Sachid, A.B., Llinas, J.P., Wang, Q., Ahn, G.H., Pitner, G., Kim, M.J., Bokor, J., Hu, C., Wong, H.-S.P. and Javey, A., Science 354 (6308), 99-102 (2016).CrossRefGoogle Scholar
Chang, H.Y., Yogeesh, M.N., Ghosh, R., Rai, A., Sanne, A., Yang, S., Lu, N., Banerjee, S.K. and Akinwande, D., Advanced Materials 28(9), 1818 (2016).CrossRefGoogle Scholar
Ma, Y., Dai, Y., Guo, M., Niu, C., Lu, J. and B, Physical Chemistry Chemical Physics 13(34), 15546 (2011).CrossRefGoogle Scholar
Ding, Y. and Xiao, B., RSC Advances 5(24), 18391 (2015).CrossRefGoogle Scholar
Schutte, W.J., De Boer, J.L., and Jellinek, F., Journal of Solid State Chemistry 70 (2), 207-209 (1987).CrossRefGoogle Scholar
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. and Kis, A., Nature Nanotechnology 6(3), 147-150 (2011).CrossRefGoogle Scholar
Jeong, H.Y., Jin, Y., Yun, S.J., Zhao, J., Baik, J., Keum, D.H., Lee, H.S. and Lee, Y.H., Advanced Materials 29 (15), 1605043 (2017).CrossRefGoogle Scholar
Zhang, T., Jiang, B., Xu, Z., Mendes, R.G., Xiao, Y., Chen, L., Fang, L., Gemming, T., Chen, S., Rummeli, M.H. and Fu, L., Nature Communications 7, 13911 (2016).CrossRefGoogle Scholar
Phan, H.D., Kim, Y., Lee, J., Liu, R., Choi, Y., Cho, J.H. and Lee, C., Advanced Materials 29 (7), 1603928 (2016).CrossRefGoogle Scholar
Boscher, N.D., Carmalt, C.J. and Parkin, I.P., Journal of Materials Chemistry, 16 (1), 122-127 (2006).CrossRefGoogle Scholar
Zhou, J., Liu, F., Lin, J., Huang, X., Xia, J., Zhang, B., Zeng, Q., Wang, H., Zhu, C., Niu, L., Wang, X., Fu, W., Yu, P., Chang, T.R., Hsu, C.H., Wu, D., Jeng, H.T., Huang, Y., Lin, H., Shen, Z., Yang, C., Lu, L., Suenaga, K., Zhou, W., Pantelides, S.T., Liu, G. and Liu, Z., Advanced Materials 29(3), 1603471 (2016).CrossRefGoogle Scholar
Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M. and Lou, J., Small 8 (7), 966 (2012).CrossRefGoogle Scholar
Kang, K.N., Godin, K. and Yang, E.H., Scientific Reports 5, 13205 (2015).CrossRefGoogle Scholar
Xu, Z.-Q., Zhang, Y., Lin, S., Zheng, C., Zhong, Y.L., Xia, X., Li, Z., Sophia, P.J., Fuhrer, M.S., Cheng, Y.-B. and Bao, Q., ACS Nano 9 (6), 6178 (2015).CrossRefGoogle Scholar
Boscher, N.D., Carmalt, C.J. and Parkin, I.P., Journal of Materials Chemistry, 16 (1), 122-127 (2005).CrossRefGoogle Scholar
Eichfeld, S.M., Hossain, L., Lin, Y.-C., Piasecki, A.F., Kupp, B., Birdwell, A.G., Burke, R.A., Lu, N., Peng, X., Li, J., Azcatl, A., McDonnell, S., Wallace, R.M., Kim, M.J., Mayer, T.S., Redwing, J.M. and Robinson, J.A., ACS Nano 9 (2), 2080 (2015).CrossRefGoogle Scholar
Gong, Y., Lin, Z., Ye, G., Shi, G., Feng, S., Lei, Y., Elías, A.L., Perea-Lopez, N., Vajtai, R., Terrones, H., Liu, Z., Terrones, M. and Ajayan, P.M., ACS Nano 9 (12), 11658 (2015).CrossRefGoogle Scholar
Gong, Y., Lin, J., Wang, X., Shi, G., Lei, S., Lin, Z., Zou, X., Ye, G., Vajtai, R., Yakobson, B.I., Terrones, H., Terrones, M., Tay, B.K., Lou, J., Pantelides, S.T., Liu, Z., Zhou, W. and Ajayan, P.M., Nature Materials 13 (12), 1135 (2014).CrossRefGoogle Scholar
Cui, F., Wang, C., Li, X., Wang, G., Liu, K., Yang, Z., Feng, Q., Liang, X., Zhang, Z., Liu, S., Lei, Z., Liu, Z., Xu, H. and Zhang, J., Advanced Materials 28 (25), 5019 (2016).CrossRefGoogle Scholar
McCreary, K.M., et al. , Scientific Reports 6 (5), 1861-1871(2016).Google Scholar
Xie, Y., Ma, X., Wang, Z., Nan, T., Wu, R., Zhang, P., Wang, H., Wang, Y., Zhan, Y. and Hao, Y., MRS Advances 3 (6-7), 365-371 (2018).CrossRefGoogle Scholar
Ling, X., Lin, Y., Ma, Q., Wang, Z., Song, Y., Yu, L., Huang, S., Fang, W., Zhang, X., Hsu, A.L., Bie, Y., Lee, Y.H., Zhu, Y., Wu, L., Li, J., Jarillo-Herrero, P., Dresselhaus, M., Palacios, T. and Kong, J., Advanced Materials 28 (12), 2322 (2016).CrossRefGoogle Scholar
Wang, Z., Xie, Y., Wang, H. L., Wu, R. X., Nan, T., Zhan, Y. J., Sun, J., Jiang, T., Zhao, Y., Lei, Y. M., Yang, M., Wang, W. D., Zhu, Q., Ma, X. H. and Hao, Y., Nanotechnology 28 (32), 325602 (2017).CrossRefGoogle Scholar
Li, S., et al. , Applied Materials Today 1 (1), 60-66(2015).CrossRefGoogle Scholar
Xie, Y., Wang, Z., Zhan, Y., Zhang, P., Wu, R., Jiang, T., Wu, S., Wang, H., Zhao, Y., Nan, T. and Ma, X., Nanotechnology 28 (8), 084001 (2017).CrossRefGoogle Scholar
Sheng, Y., Xu, W., Wang, X., He, Z., Rong, Y. and Warner, J.H., Nanoscale 8 (5), 2639-2647 (2016).CrossRefGoogle Scholar
Zheng, S., Sun, L., Zhou, X., Liu, F., Liu, Z., Shen, Z. and Fan, H.J., Advanced Optical Materials 3 (11), 1600-1605 (2016).CrossRefGoogle Scholar
Sarma, P.V., Patil, P.D., Barman, P.K., Kini, R.N. and Shaijumon, M.M., RSC Advances 6 (1), 376-382 (2015).CrossRefGoogle Scholar
McCreary, K.M., Hanbicki, A.T., Singh, S., Kawakami, R.K., Jernigan, G.G., Ishigami, M., Ng, A., Brintlinger, T.H., Stroud, R.M. and Jonke, B.T., Scientific Reports 6 (5), 1861-1871 (2016).Google Scholar
Chen, K., Wan, X., Xie, W., Wen, J., Kang, Z., Zeng, X., Chen, H. and Xu, J., Advanced Materials 27 (41), 6431 (2015).CrossRefGoogle Scholar
Zhang, J., Wang, J., Chen, P., Sun, Y., Wu, S., Jia, Z., Lu, X., Yu, H., Chen, W., Zhu, J., Xie, G., Yang, R., Shi, D., Xu, X., Xiang, J., Liu, K. and Zhang, G., Advanced Materials 28 (10), 1950-1956 (2016).CrossRefGoogle Scholar
Fu, Q., Wang, W., Yang, L., Huang, J., Zhang, J. and Xiang, B., RSC Advances 5 (21), 15795-15799 (2015).CrossRefGoogle Scholar
Cao, D., Shen, T., Liang, P., Chen, X. and Shu, H., The Journal of Physical Chemistry C 119 (8), 42944301 (2015).CrossRefGoogle Scholar
Yu, Y., Yu, Y., Xu, C., Cai, Y.-Q., Su, L., Zhang, Y., Zhang, Y.-W., Gundogdu, K. and Cao, L., Advanced Functional Materials 26 (8), 4733-4739 (2016).CrossRefGoogle Scholar
McCreary, K.M., Hanbicki, A.T., Singh, S., Kawakami, R.K., Jernigan, G.G., Ishigami, M., Ng, A., Brintlinger, T.H., Stroud, R.M. and Jonker, B.T., Scientific Reports 6, 35154 (2016).CrossRefGoogle Scholar
Rong, Y., Fan, Y., Leen Koh, A., Robertson, A.W., He, K., Wang, S., Tan, H., Sinclair, R. and Warner, J.H., Nanoscale 6 (20), 12096-12103 (2014).CrossRefGoogle Scholar
Gutierrez, H.R., Perea-Lopez, N., Elias, A.L., Berkdemir, A., Wang, B., Lv, R., Lopez-Urias, F., Crespi, V.H., Terrones, H. and Terrones, M., Nano Letters 13 (8), 3447 (2013).CrossRefGoogle Scholar
Cain, J.D., Shi, F., Wu, J. and Dravid, V.P., ACS Nano 10 (5), 5440 (2016).CrossRefGoogle Scholar