Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T03:45:50.078Z Has data issue: false hasContentIssue false

Green Applications of Carbon Nanostructures produced by Plasma Techniques

Published online by Cambridge University Press:  04 September 2017

Marquidia Pacheco*
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX.
Joel Pacheco*
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX.
Ricardo Valdivia
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX.
Alfredo Santana
Affiliation:
Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Toluca, MEX.
Xin Tu
Affiliation:
Department of Electrical Engineering and Electronics, University of Liverpool, L69 3GJ,UK.
Doroteo Mendoza
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX. Instituto de Investigaciones en Materiales, UNAM, CDMX, MEX
Hilda Frias
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX.
Lourdes Medina
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Toluca, MEX.
Jaime Macias
Affiliation:
Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca, Ocoyoacac. MEX. Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Toluca, MEX.
*
Get access

Abstract

The study of several types of plasma reactors used to obtain carbon nanostructures (CNS) is realized in the Laboratory of Plasma Applications. To obtain carbon nanotubes (CNT) thermal plasma was used and carbon nanofibers (CNF) were obtained with glow discharge. Optical emission spectroscopy was applied to correlate some plasma parameters with CNS growth. Several analytical techniques are used to study CNS obtained by both plasma techniques.

In this work, we present results concerning the use of CNS as harmful gases traps and some results of a CNT based supercapacitor prototype are also depicted.

Experimental results here detailed, show the capacity of CNF to absorb nitrogen oxides (NOx), sulfur dioxide (SO2) and, at less proportion, carbon dioxide (CO2).

CNF films were obtained by electrophoretic deposition technique and by adding CNT ink; preliminary results showed a capacitance value of 2.69 F/g. This value remains still low compared to some supercapacitors, therefore additional work has to be done in order to improve the capacitance value.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

De Volder, M. F., Tawfick, S. H., Baughman, R. H., Hart, A. J.. Science. 339, 535 (2013).CrossRefGoogle Scholar
Akasaka, T., Watari, F.. Acta biomaterialia. 5, 607 (2009).Google Scholar
Chen, Z., Zhang, L., Tang, Y., Jia, Z.. Applied Surface Science. 252, 2933 (2006).CrossRefGoogle Scholar
Mochida, I., Kawabuchi, Y., Kawano, S., Matsumura, Y., & Yoshikawa, M. Fuel, 76(6), 543548. (1997).Google Scholar
Zhao, P. Y., Zhang, J., Li, Q., & Wang, C. Y. Journal of Power Sources, 334, 170178. (2016).Google Scholar
Schodek, Daniel L., Ferreira, P, Ashby, M. F., Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects, edited by Butterworth-Heinemann, . china, 2009, p. 560.Google Scholar
Masciangioli, T., Zhang, W.X.. Environmental science & technology. 37, 102A (2003).CrossRefGoogle Scholar
UNICEF and World Health Organization in Progress on sanitation and drinking water 2015, edited by Grojec, A. 2015, p.80 Google Scholar
Codd, G.A., Morrison, L.F., Metcalf, J.S.. Toxicology and applied pharmacology, 203, 264 (2005).CrossRefGoogle Scholar
Carmichael, W.W., Boyer, G.L.. Harmful Algae, 54, 194 (2016).CrossRefGoogle ScholarPubMed
Chen, Haisheng, Ding, Yulong, Peters, Toby and Berger, Ferdinand, Patent No. 2 643 742 (30 Aug 2007)Google Scholar
Yadav, A., Teja, A. K., & Verma, N. J. Environ.Chem. Eng., 4(2), 15041513. (2016).Google Scholar
Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., Ajayan, P. M. Nat. Mater. 3, 610 (2004).Google Scholar
Patole, S.P., Alegaonkar, P.S., Lee, H.C., Yoo, J.B.. Carbon, 46, 1987 (2008).Google Scholar
S Brady-Estevez, A., Kang, S., Elimelech, M.. Small, 4, 481 (2008).Google Scholar
Vecitis, C. D., Schnoor, M. H., Rahaman, M. S., D Schiffman, J., Elimelech, M.. Environmental science & technology, 45, 3672 (2011).Google Scholar
Mostafavi, S. T., Mehrnia, M. R., Rashidi, A.M.. Desalination, 238, 271 (2009).Google Scholar
Yan, H., Pan, G., Zou, H., Li, X., Chen, H.. Chinese Science Bulletin, 49, 1694 (2004).CrossRefGoogle Scholar
Vecitis, C.D., Zodrow, K.R., Kang, S., Elimelech, M.. ACS nano, 4, 5471 (2010).Google Scholar
Mubarak, N. M., Sahu, J. N., C.Abdullah, E., Jayakumar, N. S.. Separation & Purification Reviews. 43, 311 (2014).Google Scholar
Nasser, M. S., Khraisheh, M., Atieh, M. A.. Separation and Purification Technology. 157, 141 (2016).Google Scholar
Rao, G. P., Lu, C., Su, F.. Separation and Purification Technology, 58, 224 (2007).CrossRefGoogle Scholar
Qu, X., Alvarez, P.J., Li, Q.. Water research, 47, 3931 (2013).Google Scholar
Upadhyayula, V.K., Deng, S., Mitchell, M.C., Smith, G.B.. Science of the Total Environment, 408, 1 (2009).Google Scholar
Mauter, M., Elimelech, M., Environmental Science & Technology, 42, 5843 (2008).CrossRefGoogle Scholar
Thavasi, V., Singh, G., Ramakrishna, S.. Energy & Environmental Science, 1, 205 (2008).CrossRefGoogle Scholar
World Health Organization: Ambient (Outdoor) Air Quality and Health Fact sheet No. 313 (2014a).Google Scholar
Mochida, I., Kawabuchi, Y., Kawano, S., Matsumura, Y., Yoshikawa, M.. Fuel 76, 543 (1997).Google Scholar
Yunus, I.S., Harwin, A. Kurniawan, D. Adityawarman, , A. Indarto. Environmental, Technology Reviews, 1, 136 (2012).CrossRefGoogle Scholar
Long, R.Q., Yang, R.T.. Amer. Chem. Soc. 123, 2058 (2001).Google Scholar
Walawalkar, R., Apt, J., Mancini, R.. Energy Policy, 5, 2558 (2007).Google Scholar
Denholm, P., Holloway, T.. Environmental Science & Technology, 39, 9016 (2005).Google Scholar
U.S. Energy Information Administration, Report No. DOE/EIA-0484, 2016.Google Scholar
Ibrahim, H., Ilinca, A., Perron, J.. Renewable Sustainable Energy Rev. 12, 1221 (2008).Google Scholar
Bilen, K., Ozyurt, O., Bakirci, K., Karsli, S., Erdogan, S., Yilmaz, M., Comaklı, O.. Renewable Sustainable Energy Rev. 12, 1529 (2008).Google Scholar
Chen, H., Cong, Y., Yang, W., Tan, C., Li, Y., Ding, Y.. Prog. Nat. Sci.19, 291 (2009).CrossRefGoogle Scholar
Chen, L.G., Zheng, J.L., Sun, F.R.. Energ Convers Manage 4, 2393 (2003).Google Scholar
Beaudin, M., Zareipour, H., Schellenberglabe, A., Rosehart, W.. Energy for Sustainable Development 14, 302 (2010).Google Scholar
Aurelien, P., Husnu Emrah, U., Alokik, K., Steve, M., Manish, C.. Appl. Phys. Lett. 87, 203511 (2005).Google Scholar
Matsumoto, T., Komatsu, T., Arai, K., Yamazaki, T., Kijima, M., Shimizu, H., Nakamura, J.. Chemical Communications, 7, 840 (2004).CrossRefGoogle Scholar
Wang, G.X., Ahn, J, Yao, J, Lindsay, M., Liu, H.K., Dou, S.X., Preparation and characterization of carbon nanotubes for energy storage, Journal of Power Sources 119–121 (2003) 1623 Google Scholar
Choi, H., Jung, S., Seo, J., Chang, D., Daic, L., Baek, J., Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy (2012) 1, 534551 CrossRefGoogle Scholar
Zhan, H., Xiao, J., Nie, Z., Li, X., Wang, C., Zhang, J., Liu, J., Current Opinion in Chem. Engineering, 2, 151 (2013).Google Scholar
Gao, Q PhD Thesis, Optimizing carbon/carbon supercapacitors in aqueous and organic electrolytes, Université d’Orleans 2013 p38 Google Scholar
Garcia, A., Miles, P., Centeno, T., Rojo, J.. Uniaxially oriented carbon monoliths as supercapacitor electrodes, Electrochemical Acta 55 (2010) 85398544 Google Scholar
Szczurek, A., Amaral, G., Fierro, V., Pizzi, A., Celzard, A., The use of tannin to prepare carbon gels. Part II. Carbon cryogels. Carbon 49 (2011) 27852794.Google Scholar
Candelaria, S., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J, Wang, Y., Liu, J., Li, J., Cao, G.. Nano Energy, 1, 195 (2012).Google Scholar
Frackowiak, E., Beguin, F.. Carbon, 40, 1775 (2002).Google Scholar
Du, C., Pan, N.. Nanotechnology Law & Business, 569 (2007)Google Scholar
Cott, D., Verheijen, M., Richard, O., Radu, I., De Gendt, S., van Elshocht, S., Vereecken, P.. Carbon, 58, 59 (2013).Google Scholar
Baker, J., Energy Policy 36, 4368 (2008).Google Scholar
Huang, Z.P., Xu, J.W., Ren, Z.F., Wang, J.H., Siegal, M.P., Provencio, P.N.. Applied physics letters, 73, 3845 (1998).Google Scholar
Thess, A., Lee, R., Nikolaev, P., Dai, H.. Science, 273, 483 (1996).Google Scholar
Journet, C., Maser, W.K., Bernier, P., Loiseau, A., De La Chapelle, M.L., Lefrant, D.L.S., Fischer, J.E.. Nature, 388, 756 (1997).Google Scholar
Ishigami, M., Cumings, J., Zettl, A., Chen, S.. Chemical Physics Letters, 319, 457 (2000).Google Scholar
Lange, H., Sioda, M., Huczko, A., Zhu, Y., Kroto, H.W., Walton, D.R.M. Carbon, 41, 1617 (2003).Google Scholar
Smajda, R., Andresen, J.C., Duchamp, M., Meunier, R., Casimirius, S., Hernadi, K., Magrez, A.. Physica status solidi (b), 246, 2457 (2009).Google Scholar
Patole, S.P., Alegaonkar, P.S., Lee, H.C., Yoo, J.B.. Carbon, 46, 1987 (2008).Google Scholar
Kar, R., Patel, N.N., Chand, N., Shilpa, R.K., Dusane, R.O., Patil, D.S., Sinha, S.. Carbon, 106, 233 (2016).Google Scholar
Bell, M.S., Teo, K.B., Lacerda, R.G., Milne, W.I., Hash, D.B., Meyyappan, M.. Pure and applied chemistry, 78, 1117 (2006).Google Scholar
Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., Pirio, G., Legagneux, P., Wyczisk, F., Olivier, J., Pribat, D.. Vac, J.. Sci. Technol. B, 20, 116 (2002).Google Scholar
Yusoff, N., Saad, N.H., Nabipoor, M., Sulaiman, S., Bien, D., Sheng, C.. Advanced Materials Research Journals, 938, 58 (2013).Google Scholar
Pacheco, M, Pacheco, J., Valdivia, R. in Synthesis of Carbon Nanofibers by a Glow-arc Discharge, edited by Kumar, Ashok (INTECH Open Access Publisher, 2010), p. 438.Google Scholar
Pacheco, M.J., PhD. Thesis, Université Paul Sabatier, 2003.Google Scholar
Lange, H., Huczko, A., Sioda, M., Pacheco, M., Razafinimanana, M., Gleizes, A.. Plasma Chemistry and Plasma Processing, 22, 523 (2002).CrossRefGoogle Scholar
Du, C., Pan, N.. Journal of Power Sources, 160, 1487 (2006).Google Scholar
Alvarado, C., Eng. Thesis, Universidad Nacional Autónoma de México, 2010.Google Scholar
Matsuura, T., Taniguichi, K., Watanabe, T.. Thin Solid Films, 515, 4240 (2007).Google Scholar
Mansour, A., Razafinimanana, M., Monthioux, M., Pacheco, M., Gleizes, A.. Carbon, 45, 1651 (2007).Google Scholar
Monthioux, M., Pacheco, M., Allouche, H., Razafinimanana, M., Caprais, N., Donnadieu, L., Gleizes, A.. American Institute of Physics Conference Proceedings, 633, 182 (2002).Google Scholar
Estrada, N., PhD. Thesis, Instituto Tecnológico de Toluca, 2011.Google Scholar
Juanico, J.A., MSc. Thesis, Universidad Autónoma Metropolitana, 2004.Google Scholar
Lee, J.Y., Lee, H.L., Kim, S.. Materials Science Forum, 475, 2463 (2005).Google Scholar
Wu, C.H.. Journal of Hazardous Materials, 144, 93 (2007).Google Scholar
García, R., Lic. Thesis, Instituto Tecnológico de Toluca, (2011)Google Scholar
Frackowiak, E., Beguin, F., Carbon, 39, 937 (2001)Google Scholar