Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T20:16:51.575Z Has data issue: false hasContentIssue false

Gd – Gd2O3 multimodal nanoparticles as labeling agents

Published online by Cambridge University Press:  01 March 2018

Pedro Perdigon-Lagunes*
Affiliation:
Universidad Nacional Autonoma de Mexico (UNAM), Instituto de Fisica, Mexico City, CDMX, Mexico
Octavio Estevez
Affiliation:
Universidad Nacional Autonoma de Mexico (UNAM), Instituto de Fisica, Mexico City, CDMX, Mexico
Cristina Zorrilla Cangas
Affiliation:
Universidad Nacional Autonoma de Mexico (UNAM), Instituto de Fisica, Mexico City, CDMX, Mexico
Raul Herrera-Becerra
Affiliation:
Universidad Nacional Autonoma de Mexico (UNAM), Instituto de Fisica, Mexico City, CDMX, Mexico
Get access

Abstract

Lanthanide nanoparticles had the possibility to couple many imaging techniques into a sole labeling agent has awaken high expectations on personalized medicine or <<Theranostics>>. This is possible due to their intrinsic physic – chemical properties. Combining different imaging techniques physicians may provide a better treatment and perform surgical procedures that might increase the survival rate of patients. Hence, there is an enormous opportunity area for the development of lanthanide multimodal nanoparticles. For this study, we synthesized Gd – Gd2O3 nanoparticles at room temperature by reduction method assisted by Tannic acid, and later we doped them with different ratios of Eu. The nanoparticles were analyzed through high resolution microscopy (HRTEM), Raman Spectroscopy, luminescence, and magnetic characterizations. We found small nanoparticles with a mean size of 5 nm, covered in a carbonaceous layer. In addition, different emissions were detected depending on Eu concentration. Finally, the magnetization vs. temperature recorded under zero field cooled (ZFC) and field cooled (FC) conditions exhibit an antiferromagnetic to ferromagnetic phase transition in samples with Gd2O3, and hysteresis loops recorded at 100 Oe and 2 K showed a relevant magnetization without magnetic remanence. Hence, these nanomaterials have interesting properties to be tested in biocompatibility assays.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, F., Deng, R., Wang, J., Wang, Q., Han, Y., Zhu, H., Chen, X. and Liu, X., Nature Materials, 10, 968973 (2011).CrossRefGoogle Scholar
Ascencio, J. A., Rincon, A. C. and Canizal, G., J. Phys. Chem. B, 109, 88068812 (2005).CrossRefGoogle Scholar
Ascencio, J. A., Medina-Flores, A., Bejar, L., Tavera, L., Matamoros, H. and Liu, H. B., J. Nanosci. and Nanotech, 4, 10441049 (2006).CrossRefGoogle Scholar
Cao, Y. C., J. Am.. Chem. Soc., 126, 74567457 (2004).,Google Scholar
Bazzi, R., Flores-Gonzalez, M. A., Louis, C., Lebbou, K., Dujardin, C., Brenier, A., Zhang, W., Tillement, O., Bernstein, E. and Perriat, P., J. Luminescence, 102–103, 445450 (2003).CrossRefGoogle Scholar
Xu, W., Kattel, K., Park, Y., Chang, Y., Kim, T. J. and Lee, G. H., Phys. Chem. Chem. Phys, 14, 1268712700 (2012).Google Scholar
Shi, Z., Neoh, K. G., Kang, E. T., Shuter, B. and Wang, S.-C., Contrast Media Mol. Imaging, 5, 105111 (2010).Google Scholar
Tadic, M., Panjan, M., Damnjanovic, V. and Milosevic, I., Appl. Surf. Sci., 320, 183187, (2014).Google Scholar
Rodríguez-Torres, C., Stewart, S., Adán, C. and Cabrera, A., J. Alloys and Compounds, 495, 485487 (2010).Google Scholar
Riri, M., Hor, M., Serdaoui, F. and Hlaibi, M., Arabian Journal of Chemistry, 2, S1478S1486 (2016).Google Scholar
Norek, M., Pereira, G. A., Geraldes, C. F. G. C., Denkova, A., Zhou, W. and Peters, J. A., J. Phys. Chem. C, 111, 1024010246 (2007).Google Scholar
Park, J. Y., Baek, M. J., Choi, E. S., Woo, S., Kim, J. H., Kim, T. J., Jung, J. C., Chae, K. S., Chang, Y. and Lee, G. H., ACS Nano, 11, 36633669 (2009).CrossRefGoogle Scholar
Santana-Vázquez, M., Estevez, O., Ascencio-Aguirre, F., Mendoza-Cruz, R., Bazán-Díaz, L., Zorrila, C. and Herrera-Becerra, R., Appl. Phys. A , 122, 868 1-7 (2016).Google Scholar
Ascencio-Aguirre, F. M. and Herrera-Becerra, R., Appl. Phys. A, 119, 909915 (2015).Google Scholar
Ascencio-Aguirre, F. M., Bazán-Díaz, L., Mendoza-Cruz, R., Santana-Vázquez, M., Ovalle-Encinia, O., Gómez- Rodríguez, A. and Herrera-Becerra, R., Applied Physics A, 123, 155 1-6 (2017).Google Scholar
Ascencio, J. A., Mejia, Y., Liu, H. B., Angeles, C. and Canizal, G., Langmuir, 19, 58825886 (2003).Google Scholar
Ascencio, J. A., Rincon, A. C. and Canizal, G., J. Phys. Chem. B, 109, 88068812 (2005).Google Scholar
Ascencio, J. A., Rodriguez-Monroy, A. C., Liu, H. B. and Canizal, G., Chemistry Letters, 33, 10561057 (2004).Google Scholar
Perdigon-Lagunes, P., Ascencio, J. A. and Agarwal, A., Appl. Phys. A, 4, 22652273 (2014).Google Scholar
Team, G. S., “Digital Micrograph (TM) 3.7.0 for GMS 1.2,” Gatan Inc., Pleasanton, (1999).Google Scholar
Galicia, R., Herrera, R., Rius, J., Zorrilla, C. and Gómez, A., Rev. Mex. Fıs., 59, 102106 (2013).Google Scholar
I.C. f. D. Data, “Powder Diffraction File, #12–0797”.Google Scholar
I.C. f. D. Data, “Powder Diffraction File, #65–7936”.Google Scholar
White, W. B. and Keramidas, V. G., Spectrochimica Acta, 28A, 501509 (1972).Google Scholar
Abrashev, M. V., Todorov, N. D. and Geshev, J., J. Appl. Phys., 116., 103508 1-7 (2014).Google Scholar
Dhananjaya, N., Nagabhushana, H., Nagabhushana, B. M., Rudraswamy, B., Shivakumara, C., Narahari, K. and Chakradhar, R. P. S., S.A.A., 86, 814 (2012).Google Scholar
Mitra, A., Mahapatra, A. S., Mallick, A., Shaw, A., Ghosh, M. and Chakrabarti, P. K., J. Alloys and Compounds, 726, 11951204 (2017).Google Scholar
Martínez, B., Obradors, X., Balcells, L., Rouanet, A. and Monty, C., Phys. Rev. Lett., 1, 181184 (1998).CrossRefGoogle Scholar