Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T20:57:07.405Z Has data issue: false hasContentIssue false

Fungi-derived xylindein: effect of purity on optical and electronic properties

Published online by Cambridge University Press:  13 June 2019

Gregory Giesbers
Affiliation:
Oregon State University, Corvallis, OR, United States
Taylor Krueger
Affiliation:
Oregon State University, Corvallis, OR, United States
Jonathan Van Schenck
Affiliation:
Oregon State University, Corvallis, OR, United States
Ray Van Court
Affiliation:
Oregon State University, Corvallis, OR, United States
Jeffrey Morré
Affiliation:
Oregon State University, Corvallis, OR, United States
Chong Fang
Affiliation:
Oregon State University, Corvallis, OR, United States
Sara Robinson
Affiliation:
Oregon State University, Corvallis, OR, United States
Oksana Ostroverkhova*
Affiliation:
Oregon State University, Corvallis, OR, United States
*
Get access

Abstract

We present a study of optical and electronic properties of solutions and films based on the fungi-derived pigment xylindein, extracted from decaying wood and processed without and with a simple purification step (“ethanol wash”). The “post-wash” xylindein solutions exhibited considerably lower absorption in the ultraviolet spectral range and dramatically reduced photoluminescence below 600 nm, due to removal of contaminants most likely to be fungal secondary metabolites. The “post-wash” xylindein-based films were characterized by two orders of magnitude higher charge carrier mobilities as compared to “pre-wash” samples. This underlines the importance of minimizing contaminants that disrupt the conductive xylindein network in xylindein-based electronic devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Ostroverkhova, O., Chem. Rev. 116, 13279 (2016).CrossRefGoogle Scholar
Irimia-Vladu, M., Chem. Soc. Rev. 43, 588 (2014).CrossRefGoogle Scholar
Irimia-Vladu, M., Glowacki, E. D., Troshin, P. A., Schwabegger, G., Leonat, L., Susarova, D., Krystal, O., Ullah, M., Kanbur, Y., Bodea, M., Razumov, V., Sitter, H., Bauer, S., and Sariciftci, N. S., Adv. Mater. 24, 375 (2012).CrossRefGoogle Scholar
Glowacki, E. D., Voss, G., Leonat, L., Irmia-Vladu, M., Bauer, S., and Sariciftci, N. S., Isr. J. Chem. 52, 540 (2012).CrossRefGoogle Scholar
Dittmann, M., Graupner, F. F., Maerz, B., Oesterling, S., Devivie-Riedle, R., Zinth, W., Engelhard, M., and Luettke, W., Angew. Chemie - Int. Ed. 53, 591 (2014).CrossRefGoogle Scholar
Głowacki, E. D., Irimia-Vladu, M., Bauer, S., and Sariciftci, N. S., J. Mater. Chem. B 1, 3742 (2013).CrossRefGoogle Scholar
Giesbers, G., Van Schenck, J., Gutierrez, S. V., and Robinson, S., MRS Adv. 3, 3459 (2018).CrossRefGoogle Scholar
Giesbers, G., Van Schenck, J., Quinn, A., Van Court, R., Vega Gutierrez, S., Robinson, S., and Ostroverkhova, O., submitted (2019).Google Scholar
Benson, D., Karsch-Mizrachi, I., Clark, K., Lipman, D., Ostell, J., and Sayers, E., Nucleic Acids Res. 40, D48 (2012).CrossRefGoogle Scholar
Robinson, S. C., Gutierrez, V. S., Cespedes, R. A., Iroume, N., Vorland, N. R., McClelland, A., Huber, M., and Stanton, S., J. Coatings Technol. Res. 14, 1107 (2017).CrossRefGoogle Scholar
Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, M., Scalmani, G., Barone, V., Petersson, G., and Nakatsuii, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., and Fox, D. J., Gaussian 16, Wallingford, CT (2016).Google Scholar
Day, J., Platt, A. D., Subramanian, S., Anthony, J. E., and Ostroverkhova, O., J. Appl. Phys. 105, 103703 (2009).CrossRefGoogle Scholar
Gospodinova, N. and Tomšík, E., Prog. Polym. Sci. 43, 33 (2015).CrossRefGoogle Scholar
Edwards, R. L. and Kale, N., Tetrahedron 21, 2095 (1965).CrossRefGoogle Scholar
Saikawa, Y., Watanabe, T., Hashimoto, K., and Nakata, M., Phytochemistry 55, 237 (2000).CrossRefGoogle Scholar