Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T21:47:18.836Z Has data issue: false hasContentIssue false

FTIR Ellipsometry Study on RF sputtered Permalloy-Oxide Thin Films

Published online by Cambridge University Press:  13 June 2016

Md Abdul Ahad Talukder
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666
Yubo Cui
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666
Maclyn Compton
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666
Wilhelmus Geerts*
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666
Luisa Scolfaro
Affiliation:
Department of Physics, Texas State University, San Marcos, TX 78666
Stefan Zollner
Affiliation:
Department of Physics, New Mexico State University, Las Cruces, NM 88003
*
Get access

Abstract

The optical properties of RF sputtered polycrystalline permalloy oxide (PyO) thin films were studied in the infrared by variable angle ellipsometry. The dispersion of PyO shows a Lorentzian dispersion peak at 381.5 cm-1. We attribute this peak to the transverse optical phonon of PyO. This peak is consistent with a rocksalt crystal structure for the Ni0.81Fe0.19O1-δ thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gibbons, J. F., Beadle, W.E., Solid-State Electron. 7 (11), 785790 (1964).CrossRefGoogle Scholar
Inoue, I.H., Yasuda, Y., Akinaga, H., Takagi, H., Phys. Rev. B 77 (3), 105105-1-5 (2008).Google Scholar
Compton, M. S., Simpson, N. A., Leblanc, E. G., Robinson, M.A., Geerts, W. J., Mater. Res. Soc. Symp. 1708, mrss 14-1708-VV08-01-06 (2014).CrossRefGoogle Scholar
Raghavan, V., J. Phase Equilib. Diffus. 31 (4), 369371 (2010).CrossRefGoogle Scholar
Mallick, P., Rath, C., Biswal, R., and Mishra, N.C., Indian J. Phys. 83 (4) 517523 (2009).CrossRefGoogle Scholar
Bandyopadhyay, A. K., Rios, S., Tijerina, A., Gutierrez, C., J. Alloy. Compd. 369 (1-2), 217221 (2004).CrossRefGoogle Scholar
Gauvin, R., Lifshin, E, Demers, H., Horny, P., Campbell, H., Microsc. Microanal. 12 (1), 4964 (2006).Google Scholar
Kirk, C.T., Phys. Rev. B 38 (2), 12551273 (1988).Google Scholar
Willett-Gies, T. I., Nelson, C. M., Abdallah, L. S., Zollner, S., J. Vac. Sci. Technol. A 33 (6), 061202-1-6 (2015).CrossRefGoogle Scholar
Hofmeister, A.M., Keppel, E., and Speck, A.K., Mon. Not. R. Astron. Soc. 345 (1), 1638 (2003).CrossRefGoogle Scholar
Wdowik, U.D., Parlinski, K., J. Phys.: Condens. Matter 21 (12), 125601-1-6 (2009).Google Scholar
Schleger Wachter, A.P., J. Phys. Colloques 41 (6), C5-19-21 (1980).Google Scholar
Jubb, A. M., Allen, H. C., Appl. Mat. & Interfaces 2 (10), 28042812 (2010).Google Scholar
Shimada, T., Tachibana, T., Nakagawa, T., Yamamoto, T., J. of Alloy. Compd. 379 (1-2), 122126 (2004).CrossRefGoogle Scholar
Mochizuki, S., Phys. Stat. Sol. (b) 106 (2), 667674 (1981).CrossRefGoogle Scholar