Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T01:40:26.007Z Has data issue: false hasContentIssue false

From 2-D Nanocrystalline Films to 1-D Nanomaterials: An Overview

Published online by Cambridge University Press:  19 February 2018

Chunxu Pan*
Affiliation:
Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong518057, China. School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China.
Jun Wu
Affiliation:
Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong518057, China. School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China.
Gongsheng Song
Affiliation:
Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong518057, China. School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China.
Chengzhi Luo
Affiliation:
Shenzhen Research Institute, Wuhan University, Shenzhen, Guangdong518057, China. School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China.
Delong Li
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China. Shenzhen Key Laboratory of Thermoelectric Materials, Department of Physics, Southern University of Science and Technology, Shenzhen518055, China.
Yueli Liu
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China. State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan430070, P. R. China.
Qiang Fu
Affiliation:
School of Physics and Technology, Wuhan University, Wuhan, Hubei430072, China.
*
Get access

Abstract

In the past few years, our group worked on the area of transformation from the two-dimensional (2-D) nanocrystalline films to one-dimensional (1-D) nanomaterials by using thermal oxidation. In this paper, we overview the research work on the controllable growth processes, transformation phenomena, growth mechanisms and applications. In general, the preparation process includes the following steps: 1) prepare a pure metal nanocrystalline film via a pulse electro – deposition; 2) grow variant 1-D nanomaterials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), and 1-D metal oxide nanoneedles involving ZnO, CuO and Fe3O4, etc. by using this film as catalyst. This process exhibits the following features: 1) the 1-D nanomaterials grow according to “base growth” model and no residual catalyst exists at the tip of the products; 2) the diameter of the 1-D nanomaterials can be controlled by controlling grain sizes of the 2-D films through adjusting pulse electro-deposition parameters; 3) it is more easily to get the 1-D nanomaterials with large area, uniform, vertical alignment and good shape on the substrates. We propose a “solid state based-up diffusion growth mechanism” for growth of the 1-D metal oxide nanoneedles, and “base growth model” for the 1-D carbon nanomaterials. The physical properties, such as Field emission and magnetics, of the 1-D metal oxide nanoneedles were studied, which showed desired values. In addition, we couple the ZnO nanoneedles with NiO, TiO2, graphene, Au nanoparticles, etc. for enhancing photocatalytic properties in the areas of environmental purification.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choy, K. I., Prog. in Mater. Sci. 48, 57 (2003).Google Scholar
Xia, A. and Zhuang, H. Z., Chin. J. Semiconductor. 23, 593 (2002).Google Scholar
Pal, M. and Chakravorty, D., Phys. E 5, 200 (2000).Google Scholar
Erb, U., Palumbo G, G. and Aust, K. T., Nanostruct. Films and Coat. 78, 11 (2000).CrossRefGoogle Scholar
Jiang, X., Shi, A., Wang, Y., Li, Y. and Pan, C., Nanoscale 3, 3573 (2011).Google Scholar
Otten, C. J., Lourie, O. R., Yu, M. F., Cowley, J. M. and Dyer, M. J., J. Am. Chem. Soc. 124, 4564 (2002).Google Scholar
Cheng, C. W., Xu, G. Y. and Zhang, H. Q., Mater. Chem. Phys. 97, 448 (2006).Google Scholar
Gong, D., Grimes, C. A. and Varghese, O. K., J. Mater. Res. 16, 3331 (2001).Google Scholar
Fu, Y. Y., Wang, R. M. and Xu, J., Chem. Phys. Letts. 350, 481 (2001).Google Scholar
Thess, A., Lee, R. and Nikolaev, P., Science 273, 483 (1996).Google Scholar
Wang, Y. W., Zhang, L.D. and Wang, G. Z., J. Cry. Growth 234, 171 (2002).Google Scholar
Longtin, R., Fauteux, C., Goduguchinta, R. and Pegna, J., Thin Solid Films, 515, 2958 (2007).Google Scholar
Liu, Y., Fu, Q. and Pan, C., Carbon 43, 2264 (2005).CrossRefGoogle Scholar
Liu, Y., Pan, C., Dai, Y. and Chen, W., Mater. Res. Bull. 43, 3397 (2008).Google Scholar
Liu, Y., Liao, L., Li, J. and Pan, C., J. Phys. Chem. C 111, 5050 (2007).Google Scholar
Liu, Y., Liao, L., Pan, C., Li, J., Dai, Y. and Chen, W., J. Phys. Chem. C 112, 902 (2008).Google Scholar
Liu, Y., Pan, C., Dai, Y. and Chen, W., Mater. Letts. 62, 2783 (2008).Google Scholar
Yu, W. and Pan, C., Mater. Chem. Phys. 115, 74 (2009).Google Scholar
Li, X., Zhang, J., Yuan, Y., Liao, L. and Pan, C., J. Appl. Phys. 108, 024308 (2010).Google Scholar
Han, W. Q., Fan, S. S. and Li, Q. Q., Appl. Phys. Letts. 71, 2271 (1997).Google Scholar
Han, W. Q., Fan, S. S. and Li, Q. Q., Science 277, 1287 (1997).Google Scholar
Lu, L., Shen, Y. F. and Chen, X. H., Science 304, 222 (2004).Google Scholar
Pan, C., Liu, Y., Cao, F., Wang, J. and Ren, Y., Micron, 35, 461 (2004).Google Scholar
Pan, C., Liu, Y. and Cao, F., J. Mater. Sci. Letts. 40, 1293 (2005).Google Scholar
Yeon, S. C., Sung, W. Y., Kim, W. J., Lee, S. M., Lee, H. Y. and Kim, Y. H., J. Vacuum Sci. & Technol. B 24, 940 (2006).Google Scholar
Kim, C. H., Chun, H. J. and Kim, D. S., Appl. Phys. Letts. 89, 223103 (2006).Google Scholar
Hsu, L. C., Li, Y. Y. and Lo, C. G., J. Phys. D: Appl. Phys. 41, 185003 (2008).CrossRefGoogle Scholar
Hsu, L. C. and Li, Y. Y., Appl. Phys. Letts. 93, 083113 (2008).Google Scholar
Wang, N., Cai, Y. and Zhang, R.Q., Mater. Sci. Eng. R, 60, 1 (2008)Google Scholar
Srivastava, H., Tiwari, P., Srivastava, A. K. and Nandedkar, R. V., J. Appl. Phys. 102, 054303 (2007).Google Scholar
Li, D., Jiang, X., Zhang, Y., Zhang, B. and Pan, C., J. Mater. Res. 28, 507 (2013).Google Scholar
Li, D., Wu, W., Zhang, Y., Liu, L. and Pan, C., J. Mater. Sci. 49, 1854 (2014).Google Scholar
Li, D., Zhang, Y., Wu, W. and Pan, C., RSC Adv. 4, 18186 (2014).Google Scholar
Luo, C., Li, D., Wu, W., Zhang, Y. and Pan, C., RSC Adv. 4, 3090 (2014).Google Scholar
Wu, J., Luo, C., Li, D., Fu, Q. and Pan, C., J. Mater. Sci. 52, 1285 (2017).Google Scholar
Lu, J., Wang, H. H., Peng, D. L., Chen, T., Dong, S. J. and Chang, Y., Phys. E 78, 41 (2016).Google Scholar
Li, P., Wei, Z., Wu, T., Peng, Q. and Li, Y. D., J. Am. Chem. Soc. 133, 5660 (2011).Google Scholar