Article contents
Fluidic and Electronic Transport in Silicon Nanotube Biosensors
Published online by Cambridge University Press: 10 May 2016
Abstract
Silicon nanotubes (SiNTs) represent unique building blocks for future nanoscale biosensor devices merging electronic sensing and nanofluidics. Configured as ion-sensitive field effect transistors (ISFETs), SiNTs have great potential for charge sensing or label-free chemical detection in minute sample volumes flowing through their inner cavity. In the present study, doped SiNTs were synthesized from the gas phase in a bottom-up approach. To study their nanofluidic and electronic transport properties, single SiNTs were functionally integrated as ISFETs and coupled to a microfluidic system. The experimental results for ion diffusion through a SiNT are in full agreement with numerical calculations based on Fick's second law if a diffusion coefficient is assumed approximately one order of magnitude smaller than the bulk value.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2016
References
REFERENCES
- 6
- Cited by