Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T17:18:07.708Z Has data issue: false hasContentIssue false

A First Principles Study on the Electronic, Optical and Hole Effective Mass Properties of Mg-Doped CuAlO2 and AgAlO2

Published online by Cambridge University Press:  24 July 2018

James Shook
Affiliation:
Department of Physics, Texas State University, 78666 San Marcos, Texas, United States
Pablo D. Borges
Affiliation:
Instituto de Ciências Exatas e Tecnologia, Universidade Federal de Viçosa, 38810-000 MG, Brazil
Luisa Scolfaro*
Affiliation:
Department of Physics, Texas State University, 78666 San Marcos, Texas, United States
*
Get access

Abstract

We report first principles spin-polarized density functional theory calculations to study the electronic structure of pure and Magnesium doped (replacing Al) CuAlO2 and AgAlO2 transparent conducting oxides in the hexagonal 2H structural phase. Hole effective masses are obtained from the band structure. Additionally, the complex dielectric function is obtained. A discussion of the effects of Mg-doping on the optical properties and its effectiveness in reducing hole effective masses and increasing conductivity is also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Koumoto, K., Koduka, H., and Seo, W.S., J. Mater. Chem. 11, 251 (2001).CrossRefGoogle Scholar
Zhang, K.H.L., Xi, K., Blamire, M.G., and Egdell, R.G., J. Phys. Condens. Matter 28, 383002 (2016).CrossRefGoogle Scholar
Liu, R., Li, Y., Yao, B., Ding, Z., Jiang, Y., Meng, L., Deng, R., Zhang, L., Zhang, Z., Zhao, H., and Liu, L., ACS Appl. Mater. & Interfaces 9, 12608 (2017).CrossRefGoogle Scholar
Liu, W.T., Luo, Y.Y., Liu, Z.T., and Wei, Z.M., Appl. Mech. Mater. 252, 263 (2012).CrossRefGoogle Scholar
Benko, F.A. and Koffyberg, F.P., J. Phys. Chem. Solids 45, 57 (1984).CrossRefGoogle Scholar
Kawazoe, Hiroshi, Yasukawa, Masahiro, Hyodo, Hiroyuki, Kurita, Masaaki, Yanagi, Hiroshi, and Hosono, Hideo, Lett. to Nat. 389, 939 (1997).CrossRefGoogle Scholar
Xiong, D., Zeng, X., Zhang, W., Wang, H., Zhao, X., Chen, W., and Cheng, Y.-B., Inorg. Chem. 53, 4106 (2014).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
Kresse, G. and Hafner, J., Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D., J. Phys. Condens. Matter 2745, 2745 (2002).CrossRefGoogle Scholar
Janotti, A., Segev, D., and Van De Walle, C.G., Phys. Rev. B 74, 1 (2006).CrossRefGoogle Scholar
Otero-De-La-Roza, A., Abbasi-Pérez, D., and Luaña, V., Comput. Phys. Commun. 182, 2232 (2011).CrossRefGoogle Scholar
Otero-De-La-Roza, A. and Luaña, V., Comput. Phys. Commun. 182, 1708 (2011).CrossRefGoogle Scholar
Medeiros, P.V.C., Stafström, S., and Björk, J., Phys. Rev. B 89, 041407 (2014).CrossRefGoogle Scholar
Liu, Q.-J., Jiao, Z., Liu, F.-S., and Liu, Z.-T., Phys. Chem. Chem. Phys. 18, 14317 (2016).CrossRefGoogle Scholar
Yanagi, H., Inoue, S.-I., Ueda, K., and Kawazoe, H., J. Appl. Phys. 88, 4159 (2000).CrossRefGoogle Scholar
Tate, J., Ju, H.L., Moon, J.C., Zakutayev, A., Richard, A.P., Russell, J., and McIntyre, D.H., Phys. Rev. B 80, 165206 (2009).CrossRefGoogle Scholar
Robertson, J., Peacock, P.W., Towler, M.D., and Needs, R., Thin Solid Films 96 (2002).Google Scholar
Poopanya, P., Phys. Lett. A 379, 853 (2015).CrossRefGoogle Scholar
Ghosh, C.K., Sarkar, D., Mitra, M.K., and Chattopadhyay, K.K., J. Phys. Condens. Matter 24, 235501 (2012).CrossRefGoogle Scholar