Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-07T22:32:14.072Z Has data issue: false hasContentIssue false

Fine-tuning of Rat Mesenchymal Stem Cell Senescence via Microtopography of Polymeric Substrates

Published online by Cambridge University Press:  02 December 2019

Xun Xu
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
Weiwei Wang
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
Yan Nie
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
Karl Kratz
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany
Nan Ma
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513 Teltow, Germany Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
*
Get access

Abstract

Cellular senescence, a driver of aging and age-related diseases, is a stable state found in metabolically active cells characterized by irreversible cell growth arrest and dramatic changes in metabolism, gene expression and secretome profile. Endogenous regeneration efficacy of mesenchymal stem cells (MSCs) could be attenuated due to senescence. MSCs can be modulated by not only biochemical signals but also by physical cues such as substrate topography. To provide a cell culture substrate that can prevent MSC senescence over an extended period of in vitro cultivation, here, the cell- and immunocompatible poly(ether imide) (PEI) substrate was used. Two distinct levels of roughness were created on the bottom surfaces of PEI inserts via injection molding: Low-R (similar to the thickness of attached single MSC, Rq: 3.9 ± 0.2 µm) and High-R (larger than single MSC thickness. Rq: 22.7 ± 0.8 µm). Cell expansion, lysosomal enzymatic activity, apoptosis and paracrine effects of senescent MSCs were examined by cell counting, detection of senescence-associated β-galactosidase (SA β-gal), Caspase 3/7, and CFSE labeling. MSCs showed high cell viability and similar spindle-shaped morphology on all investigated surfaces. Cells on Low-R presented the highest expansion (80000 ± 1805 cells), as compared to cells on smooth PEI and High-R. The low apoptosis level (0.08 vs 0.12 from smooth PEI) and senescence ratio (35% vs. 54% from smooth PEI) were observed in MSCs cultured on Low-R. The secretome from Low-R effectively prevents senescence and supports the proliferation of neighboring cells (1.5-fold faster) as compared to the smooth PEI secretome. In summary, the Low-R PEI provided a superior surface environment for MSCs, which promoted proliferation, inhibited apoptosis and senescence, and effectively influenced the proliferation of neighboring cells via their paracrine effect. Such microroughness can be considered as a key parameter for improving the therapeutic potential of endogenous regeneration, anti-organismal aging and anti-age-related pathologies via directly promoting cell growth and modulating paracrine effects of the senescence associated secretome.

Type
Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, M. O., Delgui, L. R., Romano, P. S. and Colombo, M. I., Cells 7 (10), 162 (2018).CrossRefGoogle Scholar
Carroll, B. and Korolchuk, V. I., FEBS J . 285 (11), 1948-1958 (2018).CrossRefGoogle Scholar
Chen, X., Li, M., Yan, J., Liu, T., Pan, G., Yang, H., Pei, M. and He, F., Alcohol Alcohol . 52 (3), 289-297 (2017).CrossRefGoogle Scholar
Zhang, D., Lu, H., Chen, Z., Wang, Y., Lin, J., Xu, S., Zhang, C., Wang, B., Yuan, Z., Feng, X., Jiang, X. and Pan, J., Mol. Med. Rep. 16 (2), 1685-1690 (2017).CrossRefGoogle Scholar
Debacq-Chainiaux, F., Borlon, C., Pascal, T., Royer, V., Eliaers, F., Ninane, N., Carrard, G., Friguet, B., de Longueville, F., Boffe, S., Remacle, J. and Toussaint, O., J. Cell Sci. 118 (Pt 4), 743-758 (2005).CrossRefGoogle Scholar
Brandl, A., Meyer, M., Bechmann, V., Nerlich, M. and Angele, P., Exp. Cell Res. 317 (11), 1541-1547 (2011).CrossRefGoogle Scholar
Seluanov, A., Gorbunova, V., Falcovitz, A., Sigal, A., Milyavsky, M., Zurer, I., Shohat, G., Goldfinger, N. and Rotter, V., Mol. Cell. Biol. 21 (5), 1552-1564 (2001).CrossRefGoogle Scholar
Childs, B. G., Durik, M., Baker, D. J. and van Deursen, J. M., Nat. Med. 21 (12), 1424-1435 (2015).CrossRefGoogle Scholar
Moujaber, O., Fishbein, F., Omran, N., Liang, Y., Colmegna, I., Presley, J. F. and Stochaj, U., Cell. Mol. Life Sci. 76 (6), 1169-1183 (2019).CrossRefGoogle Scholar
Kuilman, T., Michaloglou, C., Mooi, W. J. and Peeper, D. S., Genes Dev . 24 (22), 2463-2479 (2010).CrossRefGoogle Scholar
Acosta, J. C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J. P., Athineos, D., Kang, T. W., Lasitschka, F., Andrulis, M., Pascual, G., Morris, K. J., Khan, S., Jin, H., Dharmalingam, G., Snijders, A. P., Carroll, T., Capper, D., Pritchard, C., Inman, G. J., Longerich, T., Sansom, O. J., Benitah, S. A., Zender, L. and Gil, J., Nat. Cel. Biol. 15 (8), 978-990 (2013).CrossRefGoogle Scholar
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O. and et al. , Proc. Natl. Acad. Sci. U. S. A. 92 (20), 9363-9367 (1995).CrossRefGoogle Scholar
Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C. K. and Chaudhry, G. R., J. Tissue Eng. Regener. Med. 13 (9), 1738-1755 (2019).CrossRefGoogle Scholar
Wexler, S. A., Donaldson, C., Denning-Kendall, P., Rice, C., Bradley, B. and Hows, J. M., Br. J. Haematol. 121 (2), 368-374 (2003).CrossRefGoogle Scholar
Yang, Y. K., Regener. Ther. 9, 120-122 (2018).CrossRefGoogle Scholar
Hwang, E. S., Cell. Mol. Life Sci. 71 (21), 4207-4219 (2014).CrossRefGoogle Scholar
Stolzing, A., Jones, E., McGonagle, D. and Scutt, A., Mech. Ageing Dev. 129 (3), 163-173 (2008).CrossRefGoogle Scholar
Hayflick, L., Exp. Gerontol. 24 (5-6), 355-365 (1989).CrossRefGoogle Scholar
Simonsen, J. L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S. I., Jensen, T. G. and Kassem, M., Nat. Biotechnol. 20 (6), 592-596 (2002).CrossRefGoogle Scholar
Gharibi, B. and Hughes, F. J., Stem Cells Transl. Med. 1 (11), 771-782 (2012).CrossRefGoogle Scholar
Blazquez-Prunera, A., Diez, J. M., Gajardo, R. and Grancha, S., Stem Cell Res. Ther. 8 (1), 103 (2017).CrossRefGoogle Scholar
Zou, J., Wang, W., Kratz, K., Xu, X., Nie, Y., Ma, N. and Lendlein, A., Clin. Hemorheol. Microcirc. 70 (4), 573-583 (2018).CrossRefGoogle Scholar
Kim, S. H., Lee, B. M., Min, S. K., Song, S. U., Cho, J. H., Cho, K. and Shin, H. S., Colloids Surf., B 90, 36-40 (2012).CrossRefGoogle Scholar
Lou, P. J., Chiu, M. Y., Chou, C. C., Liao, B. W. and Young, T. H., Biomaterials 31 (7), 1568-1577 (2010).CrossRefGoogle Scholar
Mano, S. S., Uto, K. and Ebara, M., Theranostics 7 (19), 4658-4670 (2017).CrossRefGoogle Scholar
Kureel, S. K., Mogha, P., Khadpekar, A., Kumar, V., Joshi, R., Das, S., Bellare, J. and Majumder, A., Biol. Open 8 (4), bio039453 (2019).CrossRefGoogle Scholar
Xu, X., Wang, W., Kratz, K., Fang, L., Li, Z., Kurtz, A., Ma, N. and Lendlein, A., Adv. Healthcare Mater. 3 (12), 1991-2003 (2014).CrossRefGoogle Scholar
Huebsch, N., Arany, P. R., Mao, A. S., Shvartsman, D., Ali, O. A., Bencherif, S. A., Rivera-Feliciano, J. and Mooney, D. J., Nat. Mater. 9 (6), 518-526 (2010).CrossRefGoogle Scholar
Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., Wilkinson, C. D. and Oreffo, R. O., Nat. Mater. 6 (12), 997-1003 (2007).CrossRefGoogle Scholar
Lange, M., Braune, S., Luetzow, K., Richau, K., Scharnagl, N., Weinhart, M., Neffe, A. T., Jung, F., Haag, R. and Lendlein, A., Macromol. Rapid Commun. 33 (17), 1487-1492 (2012).CrossRefGoogle Scholar
Braune, S., Lange, M., Richau, K., Lutzow, K., Weigel, T., Jung, F. and Lendlein, A., Clin. Hemorheol. Microcirc. 46 (2-3), 239-250 (2010).CrossRefGoogle Scholar
Konig, J., Kohl, B., Kratz, K., Jung, F., Lendlein, A., Ertel, W. and Schulze-Tanzil, G., Clin. Hemorheol. Microcirc. 55 (4), 523-533 (2013).CrossRefGoogle Scholar
Xu, X., Wang, W., Li, Z., Kratz, K., Ma, N. and Lendlein, A., Clin. Hemorheol. Microcirc. 64 (3), 367-382 (2016).CrossRefGoogle Scholar
Roch, T., Kruger, A., Kratz, K., Ma, N., Jung, F. and Lendlein, A., Clin. Hemorheol. Microcirc. 52 (2-4), 375-389 (2012).CrossRefGoogle Scholar
Campisi, J. and d’Adda di Fagagna, F., Nat. Rev. Mol. Cell Biol. 8 (9), 729-740 (2007).CrossRefGoogle Scholar
Xu, X., Kratz, K., Wang, W., Li, Z., Roch, T., Jung, F., Lendlein, A. and Ma, N., Clin. Hemorheol. Microcirc. 55 (1), 143-156 (2013).CrossRefGoogle Scholar
Provenzano, P. P. and Keely, P. J., J. Cell Sci. 124 (Pt 8), 1195-1205 (2011).CrossRefGoogle Scholar
Bigerelle, M., Giljean, S. and Anselme, K., Acta Biomater . 7 (9), 3302-3311 (2011).CrossRefGoogle Scholar
Wang, W., Ma, N., Kratz, K., Xu, X., Li, Z., Roch, T., Bieback, K., Jung, F. and Lendlein, A., Clin. Hemorheol. Microcirc. 52 (2-4), 357-373 (2012).CrossRefGoogle Scholar
Wang, W., Xu, X., Li, Z., Kratz, K., Ma, N. and Lendlein, A., Clin. Hemorheol. Microcirc. 71 (2), 277-289 (2019).CrossRefGoogle Scholar
Stenderup, K., Justesen, J., Clausen, C. and Kassem, M., Bone 33 (6), 919-926 (2003).CrossRefGoogle ScholarPubMed
Ramirez-Ortega, M., Maldonado-Lagunas, V., Melendez-Zajgla, J., Carrillo-Hernandez, J. F., Pastelin-Hernandez, G., Picazo-Picazo, O. and Ceballos-Reyes, G., Eur. J. Pharmacol. 534 (1-3), 71-76 (2006).CrossRefGoogle Scholar
Hartel, S., Zorn-Kruppa, M., Tykhonova, S., Alajuuma, P., Engelke, M. and Diehl, H. A., Cytometry, Part A 55 (1), 15-23 (2003).CrossRefGoogle Scholar
Riss, T. L. and Moravec, R. A., Assay Drug Dev. Technol. 2 (1), 51-62 (2004).CrossRefGoogle Scholar