Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T20:16:24.713Z Has data issue: false hasContentIssue false

A Feasibility Investigation of Laboratory Based X-ray Absorption Spectroscopy in Support of Nuclear Waste Management

Published online by Cambridge University Press:  24 January 2020

L.M. Mottram
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
M.C. Dixon Wilkins
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
L.R. Blackburn
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
T. Oulton
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
M.C. Stennett
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
S.K. Sun
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
C.L. Corkhill
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
N.C. Hyatt*
Affiliation:
Immobilisation Science Laboratory, University of Sheffield, Department of Materials Science and Engineering, Sir Robert Hadfield Building, Mappin Street, S13JD, UK
*
Get access

Abstract

X-ray Absorption Spectroscopy is a technique of fundamental importance in nuclear waste management, as an element specific probe of speciation, which governs radionuclide solubility, immobilisation and migration. Here, we exploit recent developments in laboratory instrumentation for X-ray Absorption Spectroscopy, based on a Rowland circle geometry with a spherically bent crystal analyser, to demonstrate speciation in prototype ceramic and glass-ceramic waste forms. Laboratory and synchrotron XANES data acquired from the same materials, at the Ce and U L3 edges, were found to be in excellent quantitative agreement. We establish that analysable laboratory XANES data may be acquired, and interpreted for speciation, even from quite dilute absorber concentrations of a few mol%, albeit with data acquisition times of several hours. For materials with suitable absorber concentrations, this approach will enable routine element specific speciation studies to support rapid optimisation of radioactive waste forms and analysis of radiological materials in a purpose designed laboratory, without the risk associated with transport and manipulation at a synchrotron radiation facility.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D.J., Stennett, M.C., Mason, A.R., Hyatt, N.C., J. Nucl. Mater., 503, 164 (2018).CrossRefGoogle Scholar
Bailey, D.J., Stennett, M.C., Ravel, B., Grolimund, D., Hyatt, N.C., RSC Advances, 8, 2092 (2018).CrossRefGoogle Scholar
Patil, D.S., Konale, M., Gabel, M., Neill, O.K., Crum, J.V., Goel, A., Stennett, M.C., Hyatt, N.C., McCloy, J.S., J. Nucl. Mater., 510, 539 (2018).CrossRefGoogle Scholar
Joseph, K., Stennett, M.C., Hyatt, N.C., Asuvathraman, R., Dube, C.L., Gandy, A.S., Kutty, K.V.G., Jolley, K., Rao, P.R.V., Smith, R., J. Nucl. Mater., 494, 342 (2017).CrossRefGoogle Scholar
Kim, M.A., Song, J.H., Um, W., Hyatt, N., Sun, S.K., Heo, J., Ceram. Int., 43, 4687 (2017).CrossRefGoogle Scholar
Corkhill, C.L., Bailey, D.J., Tocino, F.Y, Stennett, M.C., Miller, J.A., Provis, J.L., Travis, K.P., Hyatt, N.C., ACS Appl. Mater. Interf., 8, 20562 (2016).CrossRefGoogle Scholar
Squire, J., Maddrell, E.R., Hyatt, N.C., Stennett, M.C., Int. J. Appl. Tech., 12, 92 (2015).Google Scholar
Hyatt, N.C., Schwarz, R.R., Bingham, P.A., Stennett, M.C., Corkhill, C.L., Heath, P.G., Hand, R.J., James, M., Pearson, A., Morgan, S., J. Nucl. Mater., 444, 186 (2014).CrossRefGoogle Scholar
Connelly, A.J., Hyatt, N.C., Travis, K.P., Hand, R.J., Stennett, M.C., Gandy, A.S., Brown, A.P., Apperley, D.C., J. Non Cryst. Solids, 378, 282 (2013).10.1016/j.jnoncrysol.2013.06.026CrossRefGoogle Scholar
Stennett, M.C., Freeman, C.L., Gandy, A.S., Hyatt, N.C., J. Solid State Chem., 192, 172 (2012).10.1016/j.jssc.2012.03.057CrossRefGoogle Scholar
Cassingham, N.J., Stennett, M.C., Bingham, P.A., Hyatt, N.C., Aquilanti, G., Int. J. Appl. Glass Sci., 2, 343 (2011).CrossRefGoogle Scholar
Bingham, P.A., Connelly, A.J., Cassingham, N.J., Hyatt, N.C., J. Non Cryst. Solids, 357, 2726 (2011).CrossRefGoogle Scholar
Connelly, A.J., Hyatt, N.C., Travis, K.P., Hand, R.J., Maddrell, E.R., Short, R.J., J. Non Cryst. Solids, 357, 1647 (2011).CrossRefGoogle Scholar
Reid, D.P., Stennett, M.C., Ravel, B., Woicik, J.C., Peng, N., Maddrell, E.R., Hyatt, N.C., Nucl. Inst. Meth. Phys. Res. B, 268, 1847 (2010).CrossRefGoogle Scholar
Short, R.J., Hand, R.J., Hyatt, N.C., Mobus, G, J. Nucl. Mater., 340, 179 (2005).CrossRefGoogle Scholar
Hyatt, N.C., Short, R.J., Hand, R.J., Lee, W.E., Livens, F., Charnock, J.M., Bilsborrow, R.L., Ceramic Transactions, 168, 179 (2005).Google Scholar
Seidler, G.T., Mortensen, D.R., Remesnik, A.J., Pacold, J.I., Ball, N.A., Barry, N., Styczinski, M., Hoidn, O.R., Rev. Sci. Instr., 85, 113906 (2014).CrossRefGoogle Scholar
Mortensen, D.R., Seidler, G.T., Ditter, A.S., Glatzel, P., J. Phys. Conf. Ser., 712, 012036 (2016).CrossRefGoogle Scholar
Seidler, G.T., Ditter, A.S., Ball, N.A., Remesnik, A.J., J. Phys. Conf. Ser., 712, 012015 (2016).CrossRefGoogle Scholar
Jahrman, E.P., Holden, W.M., Ditter, A.S., Mortensen, D.R., Seidler, G.T., Fister, T.T., Kozimor, S.A., Piper, L.F.J., Rana, J., Hyatt, N.C., Stennett, M.C., Rev. Sci. Instr., 90, 024106 (2019).CrossRefGoogle Scholar
Honkanen, A.P., Ollikkala, S., Ahopelto, T., Kallio, A.J., Blomberg, M., Huotari, S., Rev. Sci. Instr., 90, 033107 (2019).CrossRefGoogle Scholar
Schlesiger, C., Anklamm, L., Stiel, H., Malzer, W., Kanngiesser, B., J. Anal. Atomic Spectr., 30, 1080 (2015).CrossRefGoogle Scholar
Nemeth, Z., Szlachetko, J., Bajnoczi, E.G., Vanko, G., Rev. Sci. Instr., 87, 103105 (2016).CrossRefGoogle Scholar
Malzer, W., Grotzsch, G., Gnewkow, R., Schlesiger, C., Kowalewski, F., Van Kuiken, B., DeBeer, S., Kanngiesser, B., Rev. Sci. Instr., 89, 113111 (2018).CrossRefGoogle Scholar
Blachucki, W., Czapla-Masztafiak, J., Sa, J., Szlachetko, J., J. Anal. Atomic Spectr., 34, 1409 (2019).CrossRefGoogle Scholar
Zeeshan, F., Hoszowska, J., Loperetti-Tornay, L., Dousse, J.C., Rev. Sci. Instr., 90, 073105 (2019).CrossRefGoogle Scholar
Bès, R., Ahopelto, T., Honkanen, A.-P., Huotari, S., Leinders, G., Pakarinen, J., Kvashnina, K., J. Nucl. Mater., 507, 50 (2018).CrossRefGoogle Scholar
Ravel, B., Newville, M., J. Synch. Rad., 12, 537 (2005).10.1107/S0909049505012719CrossRefGoogle Scholar
Bearden, J.A., Burr, A.F., Rev. Mod. Phys., 39, 125 (1967).CrossRefGoogle Scholar
Dixon Wilkins, M. C., Stennett, M.C., Hyatt, N.C., in review, MRS Advances (2019).Google Scholar
Bianconi, A., Marcelli, A., Dexpert, H., Karnatak, R., Kotani, A., Jo, T., Petiau, J., Phys. Rev. B, 35, 806 (1987)CrossRefGoogle Scholar
Soldatov, A., Ivanchenko, T., Dellalonga, S., Kotani, A., Iwamoto, Y., Bianconi, A., Phys. Rev. B, 50, 5074 (1994).CrossRefGoogle Scholar
Reid, D.P., Stennett, M.C., Hyatt, N.C., J. Solid State Chem., 191, 2 (2012).CrossRefGoogle Scholar
Shannon, R.D., Acta Cryst., A32, 751 (1976).10.1107/S0567739476001551CrossRefGoogle Scholar
Stern, E. A. and Kim, K., Phys. Rev. B, 23, 3781 (1981).CrossRefGoogle Scholar