Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T07:23:49.679Z Has data issue: false hasContentIssue false

A facile synthesis method and fracture toughness evaluation of catfish bones-derived hydroxyapatite

Published online by Cambridge University Press:  10 March 2020

E.S Akpan
Affiliation:
Department of Mechanical Engineering, Ahmadu Bello University, Zaria, Nigeria
M. Dauda
Affiliation:
Department of Mechanical Engineering, Ahmadu Bello University, Zaria, Nigeria
L.S Kuburi
Affiliation:
Department of Mechanical Engineering, Ahmadu Bello University, Zaria, Nigeria
D.O Obada*
Affiliation:
Department of Mechanical Engineering, Ahmadu Bello University, Zaria, Nigeria Africa Center of Excellence on New Pedagogies in Engineering Education, Ahmadu Bello University, Zaria, Nigeria
*
*Corresponding author: [email protected]
Get access

Abstract

In this study, biological hydroxyapatite (HAp) was synthesized from catfish (Pangasius hypophthalmus) bones. First, the as-received catfish bones were de-proteinized in open air, and then converted to HAp by a solid state heat treatment method at a temperature of 900 °C for a holding time of 2 h in a muffle furnace. X-ray diffraction (XRD) analysis confirmed that HAp with high crystallinity of 99.9% was formed matching the structural properties of flouro-apatite with crystallite sizes of approximately 37.1 nm. The morphology of the HAp prepared showed irregularly shaped particles and revealed the appearance of open pores with a less agglomerated structure and a Ca/P ratio of about 1.58. The specific mechanical properties: hardness, compressive strength and fracture toughness of the catfish derived scaffolds were recorded as 480 MPa, 1.92 MPa, and 5.72 Mpa.m1/2, respectively. The fracture toughness of the HAp derived scaffolds suggests that the produced biomaterial is promising for biomedical applications. These findings are useful for the production and application of the HAp powders prepared from catfish bones, and further suggests a possible low-cost route for producing inexpensive ceramics using natural catfish bones.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Venkatesan, J., and Kim, S.K., Materials, 3(10), 4761- 4772 (2010).CrossRefGoogle Scholar
Sutha, M., Sowndarya, K., Chandran, M., Yuvaraj, D., Bharathiraja, B., and Kumar, R.P., In Waste to Wealth (pp. 59-64). Springer, Singapore (2018).CrossRefGoogle Scholar
Guo, H., Khor, K.A., Boey, Y.C., and Miao, X., Biomaterials, 24(4), 667-675 (2003).10.1016/S0142-9612(02)00381-2CrossRefGoogle Scholar
Ho, W.F., Hsu, H.C., Hsu, S.K., Hung, C.W., and Wu, S.C., Ceramics international, 39(6), 6467-6473 (2013).10.1016/j.ceramint.2013.01.076CrossRefGoogle Scholar
Rujitanapanicha, S., Kumpapanb, P., and Wanjanoic, P., 11th Eco-Energy and Materials Science and Engineering (11th EMSES) Energy Procedia 56 112117www.sciencedirect.com (2014).Google Scholar
Obada, D.O., Dauda, E.T., Abifarin, J.K., Dodoo-Arhin, D., and Bansod, N.D., Materials Chemistry and Physics, 239, 122099 (2020).10.1016/j.matchemphys.2019.122099CrossRefGoogle Scholar
FAO and WHO Codex Alimentarius Commission joint FAO/WHO food standards programme codex committee on fats and oils Twenty-third Session, Langkawi, Malaysia, 25 February–1 March (2013).Google Scholar
Sankar, S., Sekar, S., Mohan, R., Rani, S., Sundaraseelan, J., and Sastry, T.P., International journal of biological macromolecules, 42(1), 6-9 (2008).CrossRefGoogle Scholar
Sadat-Shojai, M., Khorasani, M.T., Dinpanah-Khoshdargi, E., and Jamshidi, A., Acta Biomaterialia, 9(8), 7591-7621 (2013).CrossRefGoogle Scholar
Zandi, M., Mirzadeh, H., Mayer, C., Urch, H., Eslaminejad, M.B., Bagheri, F., and Mivehchi, H.,Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(4), 1244-1255 (2010).Google Scholar
Gopi, D., Indira, J., Kavitha, L., Sekar, M., and Mudali, U.K., Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 93, 131-134 (2012).CrossRefGoogle Scholar
Gleeson, J.P., Plunkett, N.A., and O’Brien, F.J., Eur Cell Mater, 20(218), 30(2010).Google Scholar
Simon, J.L., Michna, S., Lewis, J.A., Rekow, E.D., P Thompson, V., Smay, J.E., and Ricci, J.L., Journal of Biomedical Materials Research Part A: An Official Journal of the Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 83(3), 747-758 (2007).Google Scholar
Tanaka, M., Haniu, H., Kamanaka, T., Takizawa, T., Sobajima, A., Yoshida, K., and Saito, N., Materials, 10(1), 33(2017).CrossRefGoogle Scholar
Standard Specification for Composition of Ceramic Hydroxyapatite for Surgi-cal Implants,”ASTM Designation F 1185.1988 Book of ASTM Standards(reap-proved 1993). American Society for Testing and Materials, West Conshohocken, PAGoogle Scholar
Standard Specification for Composition of Anorganic Bone for Surgical Implants,”ASTM Designation F 1581.1999 Book of ASTM Standards. American Society for Testing and Materials, West Conshohocken, PAGoogle Scholar
Boutinguiza, M., Lusquiños, F., Comesaña, R., Riveiro, A., Quintero, F., and Pou, J., Applied Surface Science, 254(4), 1264-1267(2007).CrossRefGoogle Scholar
Boutinguiza, M., Lusquiños, F., Riveiro, A., Comesaña, R., and Pou, J., Applied Surface Science, 255(10), 5382-5385(2009).CrossRefGoogle Scholar
Rocha, J.H.G.Lemos, A.F., Agathopoulos, S., Valério, P., Kannan, S., Oktar, F.N., and Ferreira, J.M.F., Bone, 37(6), 850-857(2005).CrossRefGoogle ScholarPubMed
Dey, S., Das, M., and Balla, V.K., Materials Science and Engineering: C, 39, 336-339 (2014).CrossRefGoogle Scholar
ASTM E384-99 A Standard Test Method for Microindentation Hardness of Materials, 1984.Google Scholar
Juraida, J., Sontang, M., Ghapur, E.A., and Isa, M.I.N., UMTAS 2011 Empowering Science, Technology and Innovation towards a Better Tomorrow (2011).Google Scholar
Zhou, J., Zhang, X., Chen, J., Zeng, S., and De Groot, K., Journal of materials science: materials in medicine, 4(1), 83-85(1993).Google Scholar
Chang, H.H., Cheng, C.L., Huang, P.J., and Lin, S.Y., Analytical and bioanalytical chemistry, 406(1), 359-366 (2014).CrossRefGoogle Scholar
Vuola, J., Taurio, R., Göransson, H., Asko-Seljavaara, S., Biomaterials, 19(1-3), 223-227(1998).CrossRefGoogle Scholar
Ramesh, S., Tan, C.Y., Bhaduri, S.B., and Teng, W.D., Ceramics international, 33(7), 1363-1367 (2007).CrossRefGoogle Scholar
Kobayashi, S., Kawai, W.S, and Wakayama, S., Journal of Materials Science: Materials in Medicine, 17(11), 1089-1093 (2006).Google Scholar
Goller, G., Oktar, F.N., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F., Kayali, E.S., and Peker, I., Journal of sol-gel science and technology, 37(2), 111-115 (2006).CrossRefGoogle Scholar
Yazdanpanah, Z., Bahrololoom, M.E., Hashemi, B., Journal of the mechanical behavior of biomedical materials, 41, 36-42 (2015).CrossRefGoogle Scholar
Baradaran, S., Moghaddam, E., Basirun, W.J., Mehrali, M., Sookhakian, M., Hamdi, M., and Alias, Y., Carbon, 69, 32-45 (2014).CrossRefGoogle Scholar
Mirzaali, M.J., Schwiedrzik, J.J., Thaiwichai, S., Best, J.P., Michler, J., Zysset, P.K., and Wolfram, U., Bone, 93, 196-211 (2016).CrossRefGoogle ScholarPubMed
Fu, Q., Saiz, E., Rahaman, M.N., and Tomsia, A.P., Advanced functional materials, 23(44), 5461-5476(2013).CrossRefGoogle Scholar
White, A.A., Best, S.M., and Kinloch, I.A., International Journal of Applied Ceramic Technology, 4(1), 1-13(2007).CrossRefGoogle Scholar
Jones, J.R., Ehrenfried, L.M. and Hench, L.L., Biomaterials, 27(7), 964-973 (2006).CrossRefGoogle Scholar
Lawn, B.R., and Marshall, D.B., Journal of the American ceramic society 62.7‐8; 347-350 (1979).CrossRefGoogle Scholar
Li, H., Gong, M., Yang, A., Ma, J., Li, X., & Yan, Y.International journal of nanomedicine, 7, 1287 (2012).CrossRefGoogle Scholar
K Abifarin, J., O Obada, D., T Dauda, E., & Dodoo-Arhin, D... Data in brief, 26, 104485.Google Scholar
Toppe, J., Albrektsen, S., Hope, B., & Aksnes, A.. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 146(3), 395-401.CrossRefGoogle Scholar