Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T16:02:38.288Z Has data issue: false hasContentIssue false

Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

Published online by Cambridge University Press:  11 April 2016

Yanlong Tai*
Affiliation:
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, COHMAS Laboratory, Thuwal 23955-6900, Saudi Arabia
Gilles Lubineau*
Affiliation:
King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, COHMAS Laboratory, Thuwal 23955-6900, Saudi Arabia
*
*Corresponding author E-mail: [email protected] (Yanlong Tai), [email protected] (Gilles Lubineau)
*Corresponding author E-mail: [email protected] (Yanlong Tai), [email protected] (Gilles Lubineau)
Get access

Abstract

Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). How baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (> 69 %, PET = 90 %), and good stability when subjected to cyclic loading (> 1000 cycles, better than indium tin oxide film) during processing. Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5×5 sensing pixels).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Martin, K., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., et al. ., Nature 499, 458 (2013).Google Scholar
Wang, H., Wei, P., Li, Y., Han, J., Lee, H. R., Naab, B. D., et al. , P. Natl. Acad. Sci. USA 111, 4776 (2014).CrossRefGoogle Scholar
Tai, Y. L., Mulle, M., Aguilar, I., and Lubineau, G., Nanoscale 7, 14766 (2015).Google Scholar
Behabtu, N. et al. . Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotech. 5, 406411 (2010).Google Scholar
Fu, W., Liu, L., Jiang, K., Li, Q., and Fan, S., Carbon 48, 1876 (2010).CrossRefGoogle Scholar
Kang, H., Jung, S., Jeong, S., Kim, G., and Lee, K., Nat. Comm. 6, 6503 (2015).Google Scholar
Liu, , Parvez, K., Li, R., Dong, R., Feng, X., and Müllen, K., Adv. Mater. 27, 669 (2015).Google Scholar
Lee, S. H., Kim, H. W., Hwang, J. O., Lee, W. J., Kwon, J., and Bielawski, C. W., et al. ., Angew. Chem. 122, 10282 (2010).Google Scholar
Choi, B., Yang, M., Hong, W., Choi, J., and Huh, Y., ACS Nano 6, 4020 (2012).Google Scholar
Kim, G. T., Gim, S. J., Cho, S. M., Koratkar, N., and Oh, I. K., Adv. Mater. 26, 5166 (2014).CrossRefGoogle Scholar
Koenig, S. P., Wang, L., Pellegrino, J., and Bunch, J. S., Nat. Nanotech. 7, 728 (2012).Google Scholar
Tai, Y. L., and Yang, Z. G., Langmuir 31, 13257 (2015).Google Scholar
Tai, Y. L., and Lubineau, G., Sci Rep.-UK 6, 19632 (2016).Google Scholar