Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T23:12:36.524Z Has data issue: false hasContentIssue false

Fabrication of CsPbBr3 Thick Films by Using a Mist Deposition Method for Highly Sensitive X-ray Detection

Published online by Cambridge University Press:  13 January 2020

Yuki Haruta
Affiliation:
Graduate School of Energy Science, Kyoto University Kyoto, 606-8501, Japan
Takumi Ikenoue*
Affiliation:
Graduate School of Energy Science, Kyoto University Kyoto, 606-8501, Japan
Masao Miyake
Affiliation:
Graduate School of Energy Science, Kyoto University Kyoto, 606-8501, Japan
Tetsuji Hirato
Affiliation:
Graduate School of Energy Science, Kyoto University Kyoto, 606-8501, Japan
*
Get access

Abstract

X-ray imaging is a valuable technique used for medical imaging and non-destructive inspection of industrial products. However, the radiation may put humans at risk of developing cancer. Consequently, highly sensitive X-ray detectors, which enable X-ray imaging at a low dose rate, are required. Metal halide perovskite materials have demonstrated excellent X-ray detection performance including a high sensitivity owing to their high absorption coefficient, high carrier mobility, and long carrier lifetime. However, perovskite thick films with a large area, which is essential to realize the application of such materials to X-ray imaging devices have not been extensively investigated. To this end, in this study, a polymer is employed as a buffer layer to avoid film exfoliation, which makes it difficult to fabricate perovskite thick films, and a 110-μm-thick CsPbBr3 film is successfully obtained using a scalable solution method. In addition, an X-ray detector based on the CsPbBr3 thick film is fabricated, which demonstrates a sensitivity of 11,840 μC Gyair–1 cm–2. This sensitivity is approximately 600 times higher than that of the existing commercial a-Se X-ray detectors.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 60506051 (2009).CrossRefGoogle Scholar
Feng, M., You, S., Cheng, N., Du, J., Electrochim. Acta. 293, 356363 (2019).CrossRefGoogle Scholar
Duan, J., Dou, D., Zhao, Y., Wang, Y., Yang, X., Yuan, H., He, B., Tang, Q., Mater. Today Energy. 10, 146152 (2018).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M.K., Zakeeruddin, S.M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M., Energy Environ. Sci. 9, 19891997 (2016).CrossRefGoogle Scholar
Liang, J., Wang, C., Wang, Y., Xu, Z., Lu, Z., Ma, Y., Zhu, H., Hu, Y., Xiao, C., Yi, X., Zhu, G., Lv, H., Ma, L., Chen, T., Tie, Z., Jin, Z., Liu, J., J. Am. Chem. Soc. 138, 1582915832 (2016).CrossRefGoogle Scholar
Pham, H.T., Duong, T., Rickard, W.D.A., Kremer, F., Weber, K.J., Wong-Leung, J., J. Phys. Chem. C. 123, 2671826726 (2019).CrossRefGoogle Scholar
Saidaminov, M.I., Haque, M.A., Almutlaq, J., Sarmah, S., Miao, X.-H., Begum, R., Zhumekenov, A.A., Dursun, I., Cho, N., Murali, B., Mohammed, O.F., Wu, T., Bakr, O.M., Adv. Opt. Mater. 5, 1600704 (2017).CrossRefGoogle Scholar
Shen, Y., Wei, C., Ma, L., Wang, S., Wang, X., Xu, X., Zeng, H., J. Mater. Chem. C. 6, 1216412169 (2018).CrossRefGoogle Scholar
Yang, T., Li, F., Zheng, R., ACS Appl. Electron. Mater. 1, 13481366 (2019).CrossRefGoogle Scholar
Li, C., Han, C., Zhang, Y., Zang, Z., Wang, M., Tang, X., Du, J., Sol. Energy Mater. Sol. Cells. 172, 341346 (2017).CrossRefGoogle Scholar
Yakunin, S., Sytnyk, M., Kriegner, D., Shrestha, S., Richter, M., Matt, G.J., Azimi, H., Brabec, C.J., Stangl, J., Kovalenko, M. V., Heiss, W., Nat. Photonics. 9, 444449 (2015).CrossRefGoogle Scholar
Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H.-H., Wang, C., Ecker, B.R., Gao, Y., Loi, M.A., Cao, L., Huang, J., Nat. Photonics. 10, 333339 (2016).CrossRefGoogle Scholar
Wei, W., Zhang, Y., Xu, Q., Wei, H., Fang, Y., Wang, Q., Deng, Y., Li, T., Gruverman, A., Cao, L., Huang, J., Nat. Photonics. 11, 315321 (2017).CrossRefGoogle Scholar
Kim, Y.C., Kim, K.H., Son, D.-Y., Jeong, D.-N., Seo, J.-Y., Choi, Y.S., Han, I.T., Lee, S.Y., Park, N.-G., Nature 550, 8791 (2017).CrossRefGoogle Scholar
Basiricò, L., Senanayak, S.P., Ciavatti, A., Abdi‐Jalebi, M., Fraboni, B., Sirringhaus, H., Adv. Funct. Mater. 29, 1902346 (2019).CrossRefGoogle Scholar
Gou, Z., Huanglong, S., Ke, W., Sun, H., Tian, H., Gao, X., Zhu, X., Yang, D., Wangyang, P., Phys. Status Solidi – Rapid Res. Lett. 13, 1900094 (2019).CrossRefGoogle Scholar
Pan, W., Yang, B., Niu, G., Xue, K., Du, X., Yin, L., Zhang, M., Wu, H., Miao, X., Tang, J., Adv. Mater. 31, 1904405 (2019).CrossRefGoogle Scholar
Fu, R., Zhou, W., Li, Q., Zhao, Y., Yu, D., Zhao, Q., ChemNanoMat . 5, 253265 (2019).CrossRefGoogle Scholar
Stoumpos, C.C., Malliakas, C.D., Peters, J.A., Liu, Z., Sebastian, M., Im, J., Chasapis, T.C., Wibowo, A.C., Chung, D.Y., Freeman, A.J., Wessels, B.W., Kanatzidis, M.G., Cryst. Growth Des. 13, 27222727 (2013).CrossRefGoogle Scholar
He, Y., Matei, L., Jung, H.J., McCall, K.M., Chen, M., Stoumpos, C.C., Liu, Z., Peters, J.A., Chung, D.Y., Wessels, B.W., Wasielewski, M.R., Dravid, V.P., Burger, A., Kanatzidis, M.G., Nat. Commun. 9, 1609 (2018).CrossRefGoogle Scholar
Haruta, Y., Ikenoue, T., Miyake, M., Hirato, T., Appl. Phys. Express. 12, 085505 (2019).CrossRefGoogle Scholar
Kasap, S.O., J. Phys. D. Appl. Phys. 33, 28532865 (2000).CrossRefGoogle Scholar