Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T22:30:48.577Z Has data issue: false hasContentIssue false

Fabrication and Characterization of Air-Stable Organic-Inorganic Bismuth-Based Perovskite Solar Cells

Published online by Cambridge University Press:  26 June 2018

S. Sanders
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
D. Stümmler
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
P. Pfeiffer
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
N. Ackermann
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
G. Simkus
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134Herzogenrath, Germany
M. Heuken
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany AIXTRON SE, Dornkaulstr. 2, 52134Herzogenrath, Germany
P. K. Baumann
Affiliation:
APEVA SE, Dornkaulstr. 2, 52134Herzogenrath, Germany
A. Vescan
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
H. Kalisch*
Affiliation:
Compound Semiconductor Technology, RWTH Aachen University, Sommerfeldstr. 18, 52074Aachen, Germany
*
Get access

Abstract:

Pb-based organometal halide perovskite solar cells have passed the threshold of 20 % power conversion efficiency (PCE). However, the main issues hampering commercialization are toxic Pb contained in these cells and their instability in ambient air. Therefore, great attention is devoted to replace Pb by Sn or Bi, which are less harmful and - in the case of Bi - also expected to yield enhanced stability. In literature, the most efficient hybrid organic-inorganic methylammonium bismuth iodide (MBI) perovskite solar cells reach PCE up to 0.2 %. In this work, we present spin-coated MBI perovskite solar cells and highlight the impact of the concentration of the perovskite solution on the layer morphology and photovoltaic (PV) characteristics. The solar cells exhibit open-circuit voltages of 0.73 V, which is the highest value published for this type of solar cell. The PCE increases from 0.004 % directly after processing to 0.17 % after 48 h of storage in air. 300 h after exposure to air, the cells still yield 56 % of their peak PCE and 84 % of their maximum open-circuit voltage.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, W. S., Park, B.-W., Jung, E. H., Jeon, N. J., Kim, Y. C., Lee, D. U., Shin, S. S., Seo, J., Kim, E. K., Noh, J. H., Seok, S. I., Science 356, 1376 (2017).CrossRefGoogle Scholar
Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A., Grätzel, M., Energy Environ. Sci. 9, 1989 (2016).CrossRefGoogle Scholar
Jiang, Q., Zhang, L., Wang, H., Yang, X., Meng, J., Liu, H., Yin, Z., Wu, J., Zhang, X., You, J., Nat. Energy 2, 16177 (2016).CrossRefGoogle Scholar
Park, N.-G., Mater. Today 18, 65 (2015).CrossRefGoogle Scholar
Hoye, R. L. Z., Brandt, R. E., Osherov, A., Stevanović, V., Stranks, S. D., Wilson, M. W. B., Kim, H., Akey, A. J., Perkins, J. D., Kurchin, R. C., Poindexter, J. R., Wang, E. N., Bawendi, M. G., Bulović, V., Buonassisi, T., Chemistry 22, 2605 (2016).CrossRefGoogle Scholar
Zhao, Z., Gu, F., Li, Y., Sun, W., Ye, S., Rao, H., Liu, Z., Bian, Z., Huang, C., Adv. Sci. 4, 1700204 (2017).CrossRefGoogle Scholar
Noel, N. K., Stranks, S. D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.-A., Sadhanala, A., Eperon, G. E., Pathak, S. K., Johnston, M. B., Petrozza, A., Herz, L. M., Snaith, H. J., Energy Environ. Sci. 7, 3061 (2014).CrossRefGoogle Scholar
Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H., Kanatzidis, M. G., Nat. Photonics 8, 489 (2014).CrossRefGoogle Scholar
Singh, T., Kulkarni, A., Ikegami, M., Miyasaka, T., ACS Appl. Mater. Interfaces 8, 14542 (2016).CrossRefGoogle Scholar
Park, B.-W., Philippe, B., Zhang, X., Rensmo, H., Boschloo, G., Johansson, E. M. J., Adv. Mater. 27, 6806 (2015).CrossRefGoogle Scholar
Kim, M. K., Jeon, T., Park, H. I., Lee, J. M., Nam, S. A., Kim, S. O., CrystEngComm 18, 6090 (2016).CrossRefGoogle Scholar
Im, J.-H., Kim, H.-S., Park, N.-G., APL Mater. 2, 81510 (2014).CrossRefGoogle Scholar
Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A. J., Gupta, G., Crochet, J. J., Chhowalla, M., Tretiak, S., Alam, M. A., Wang, H.-L., Mohite, A. D., Science 347, 522 (2015).CrossRefGoogle Scholar
Cappel, U. B., Daeneke, T., Bach, U., Nano Lett. 12, 4925 (2012).CrossRefGoogle Scholar
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., Seok, S. I., Nano Lett. 13, 1764 (2013).CrossRefGoogle Scholar