Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T13:58:37.854Z Has data issue: false hasContentIssue false

Express-Method for the Study of Electrolyte Anion Profiles in the Bulk of Dense Anodic Alumina Films

Published online by Cambridge University Press:  11 January 2018

Valentina Yakovtseva
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus
Dimitry Shimanovich
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus
Vitaly Sokol
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus
Alexey Subko
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus
Vitaly Bondarenko*
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus
*
Get access

Abstract

The procedure proposed is the express method for the study of anion distribution profiles in the anodic aluminum oxide film. The method consists in measuring the variation of the steady-state electrode potential during the oxide etching. It allows the influence of the initial aluminum composition, the electrolyte composition, anodization regimes, etc. on the characteristics of dense anodic alumina films to be studied. The method developed can be used to study a chemical evolution in anodic alumina formed to correlate with modelling and simulations across materials science disciplines.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wood, G. C., Skeldon, P., Thompson, G. E. and Shimizu, K., J. Electrochem. Soc., 143, 74 (1996).CrossRefGoogle Scholar
Bacho, I.M., Rodríguez-López, S., Climent-Font, A., Fichou, D., Vázquez, M., and Hernández-Vélez, M., Microporous and Mesoporous Materials 225, 192 (2016).CrossRefGoogle Scholar
Cherenda, N.N., Uglov, V.V., Litvinovich, G.V., Danilyuk, A.L., Nuclear Instruments and Methods in Physics Research B 216, 340 (2004).CrossRefGoogle Scholar
Garcia-Vergara, S.J., Khazmi, K.El., Skeldon, P., Thompson, G.E., Corrosion Science 48, 2937 (2006).Google Scholar
Garcia-Vergara, S.J., Molchan, I.S., Zhou, F., Habazaki, H., Kowalski, D., Skeldon, P., Thompson, G.E., Surface and Interface Analysis 43, 893 (2011).Google Scholar
McNaught, A. D. and Wilkinson, A., IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). (Blackwell Scientific Publications, Oxford, 1997) 1622 p.Google Scholar
Takahashi, H., Nagayama, M., Electrochemica Acta 23, 279 (1978).Google Scholar
Konno, H., Kobayashi, S., Takahashi, H., Nagayam, M., Electrochimica Acta 25, 1667 (1980).Google Scholar
Zhou, F., LeClere, D. J., Garcia-Vergara, S. J., Hashimoto, T., Molchan, I. S., Habazaki, H., Skeldon, P., and Thompson, G. E., J. Electrochem. Soc. 157, C437 (2010).Google Scholar
Vrublevsky, I., Jagminas, A., Hemeltjen, S., Goedel, W.A., Applied Surface Science 254, 7326 (2008).Google Scholar