Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T18:18:37.878Z Has data issue: false hasContentIssue false

Exciton Bose-Einstein Condensation in Double Walled Carbon Nanotubes

Published online by Cambridge University Press:  15 June 2017

Igor V. Bondarev*
Affiliation:
Department of Math & Physics, North Carolina Central University, Durham, NC 27707, U.S.A.
Adrian Popescu
Affiliation:
Department of Math & Physics, North Carolina Central University, Durham, NC 27707, U.S.A.
*
Get access

Abstract

We demonstrate theoretically the possibility for the Bose-Einstein condensation of excitons in properly selected double walled carbon nanotube structures. The condensation mechanism is enabled by the interaction of excitons residing on one tubule with the near-field generated by the plasmon mode of the other coaxial tubule, resulting in new hybridized bosonic quasiparticles called exciton-plasmons. We derive the dispersion relation for the exciton-plasmons, and calculate the exciton participation rate in the exciton-plasmon condensate. The requirements for forming the appropriate double walled carbon nanotube combinations capable of the optimum exciton-plasmon coupling regime needed to realize the condensation effect, as well as the possibility of experimental observation of the phenomenon, are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blatt, J. M., Boer, K. W., and Brandt, W., Phys. Rev. 126, 16911692 (1962).CrossRefGoogle Scholar
Keldysh, L. V. and Kozlov, A. N., Soviet Physics JETP 27, 521528 (1968).Google Scholar
Kasprzak, J., et al. , Nature 443, 409414 (2006).CrossRefGoogle Scholar
Byrnes, T., Kim, N. Y. and Yamamoto, Y., Nature Phys. 10, 803813 (2014).CrossRefGoogle Scholar
Fogler, M. M., Butov, L. V. and Novoselov, K. S., Nature Commun. 5, 45554559 (2014).CrossRefGoogle Scholar
Bondarev, I. V. and Meliksetyan, A. V., Phys. Rev. B 89, 045414 (2014).CrossRefGoogle Scholar
Bondarev, I. V., Phys. Rev. B 85, 035448 (2012).CrossRefGoogle Scholar
Bondarev, I. V., Tatur, K. and Woods, L. M., Phys. Rev. B 80, 085407 (2009).CrossRefGoogle Scholar
Bagnato, V. and Kleppner, D., Phys. Rev. A 44, 74397441 (1991).CrossRefGoogle Scholar
Dai, W.-S. and Xie, M., Phys. Rev. A 67, 027601 (2003).CrossRefGoogle Scholar
Bondarev, I. V., Woods, L. M., and Popescu, A., in: Plasmons: Theory and Applications (Nova Science, NY 2011), pp. 381435.Google Scholar
Bondarev, I. V. and Antonijevic, T., Phys. Status Solidi C 9, 12591264 (2012).CrossRefGoogle Scholar
Toyozawa, Y., Optical Processes in Solids (Cambridge University Press, 2003).CrossRefGoogle Scholar
Hohenberg, P. C., Phys. Rev. 158, 383386 (1967).CrossRefGoogle Scholar
Feynman, R. P., Statistical Mechanics (W. A. Benjamin, Reading, MA 1972).Google Scholar